IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920301392.html
   My bibliography  Save this article

Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles

Author

Listed:
  • Salazar, R.
  • Abdelkefi, A.

Abstract

Body caudal fin (BCF) locomotion aquatic unmanned vehicles (AUVs) are making critical transitions to full autonomous systems but have challenge in endurance. Therefore, engineering solutions need to be found to maximize the mission capability of these systems. The body actuation of these AUVs offers a platform for a piezoelectric energy harvester to scavenge electrical energy from the mechanical motion. The motion of the animals which these AUVs are inspiring from can be represented in a spatio-temporal function with different envelope constraints to represent an Anguilliform, Subcarangiform, Carangiform, and Thunniform motion. A better approximation of the strain is accounted for by considering the higher-order nonlinear terms due to the large deformation of these systems. Gibbs function is utilized to better approximate the nonlinear constitutive relations of the piezoelectric material. Parametric studies are carried out to investigate how the nonlinear strain and nonlinear piezoelectric material properties affects the performance of the BCF energy harvesters under each motion for various length and placement conditions. The results show that considering the higher-order strain is needed due to the underestimation of the harvested power when linear assumptions are employed for these types of undulatory motion. It is shown that assuming that load resistance, Ropt≈1/Cpω, over-approximates the resistance for the nonlinear piezoelectric material model. This analysis shows the importance of including the nonlinearities due to the piezoelectric material and large deformations in order to accurately estimate the levels of the harvested power and its optimal configuration.

Suggested Citation

  • Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301392
    DOI: 10.1016/j.apenergy.2020.114627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    2. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    3. Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
    4. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    5. Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
    6. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    7. Javed, U. & Abdelkefi, A., 2018. "Role of the galloping force and moment of inertia of inclined square cylinders on the performance of hybrid galloping energy harvesters," Applied Energy, Elsevier, vol. 231(C), pages 259-276.
    8. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moradi-Dastjerdi, Rasool & Behdinan, Kamran, 2021. "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate," Applied Energy, Elsevier, vol. 293(C).
    2. Ryan Salazar & Ryan Quintana & Abdessattar Abdelkefi, 2021. "Role of Electromechanical Coupling, Locomotion Type and Damping on the Effectiveness of Fish-Like Robot Energy Harvesters," Energies, MDPI, vol. 14(3), pages 1-32, January.
    3. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    2. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    3. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    4. Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
    5. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    6. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    8. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    9. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    10. Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
    11. Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
    12. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    13. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
    14. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    15. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
    16. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    17. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    18. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    19. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    20. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.