IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p71-d300780.html
   My bibliography  Save this article

Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics

Author

Listed:
  • Rashid Naseer

    (Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
    National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Huliang Dai

    (Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Abdessattar Abdelkefi

    (Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA)

  • Lin Wang

    (Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

This work reports a comparative study on piezoelectric energy harvesting from vortex-induced vibration (VIV) with multi-stability characteristics by introducing the nonlinear magnetic forces. A lumped-parameter model for the piezoelectric cantilever-cylinder structure is considered for the sake of qualitative investigation. Firstly, the buckling displacement of harvester in monostable and bistable configurations is evaluated by virtue of a static analysis. Then, the coupled frequency and damping of the harvester varying with the electrical load resistance are determined for different values of the spacing distance between magnets. Subsequently, the dynamic behaviors and generated voltage of the harvester in two configurations are elaborately investigated, showing that varying the spacing distance is followed by a shift of lock-in region which is significant for performance optimization according to ambient wind conditions. In addition, the results show the harvester in monostable configuration displays a hardening behavior while a softening behavior takes place in bistable configuration, both of the harvester in two configurations can widen the synchronization region.

Suggested Citation

  • Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:71-:d:300780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
    2. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    3. Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
    4. Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
    5. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    6. Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
    7. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    8. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong & Li, Boyang, 2017. "Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement," Energy, Elsevier, vol. 133(C), pages 723-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijun Zhu & Huilin Shang, 2022. "Global Dynamics of the Vibrating System of a Tristable Piezoelectric Energy Harvester," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    2. Iro Malefaki & Efstathios Konstantinidis, 2020. "Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder," Energies, MDPI, vol. 13(3), pages 1-16, February.
    3. Hai Dang Le & Soon-Duck Kwon, 2021. "Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays," Energies, MDPI, vol. 14(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    2. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    3. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    5. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    6. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    7. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    8. Christina Hamdan & John Allport & Azadeh Sajedin, 2021. "Piezoelectric Power Generation from the Vortex-Induced Vibrations of a Semi-Cylinder Exposed to Water Flow," Energies, MDPI, vol. 14(21), pages 1-25, October.
    9. Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
    10. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    11. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    12. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    13. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    14. Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
    15. Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
    16. Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
    17. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    18. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    19. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:71-:d:300780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.