Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
- Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
- Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
- Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
- Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
- Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
- Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
- Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong & Li, Boyang, 2017. "Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement," Energy, Elsevier, vol. 133(C), pages 723-736.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yijun Zhu & Huilin Shang, 2022. "Global Dynamics of the Vibrating System of a Tristable Piezoelectric Energy Harvester," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
- Iro Malefaki & Efstathios Konstantinidis, 2020. "Assessment of a Hydrokinetic Energy Converter Based on Vortex-Induced Angular Oscillations of a Cylinder," Energies, MDPI, vol. 13(3), pages 1-16, February.
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Hai Dang Le & Soon-Duck Kwon, 2021. "Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays," Energies, MDPI, vol. 14(19), pages 1-14, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
- Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
- Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
- Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
- Christina Hamdan & John Allport & Azadeh Sajedin, 2021. "Piezoelectric Power Generation from the Vortex-Induced Vibrations of a Semi-Cylinder Exposed to Water Flow," Energies, MDPI, vol. 14(21), pages 1-25, October.
- Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
- Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
- Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
- Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
- Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
- Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
- Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
- Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
More about this item
Keywords
piezoelectric energy harvesting; vortex-induced vibration; multi-stability; broadband synchronization region; buckling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:71-:d:300780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.