IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000499.html
   My bibliography  Save this article

Using 0–1 test to diagnose periodic and chaotic motions of nonlinear vortex-induced vibration energy harvesters

Author

Listed:
  • Ma, Xiaoqing
  • Litak, Grzegorz
  • Zhou, Shengxi

Abstract

Nonlinear wind-induced vibration energy harvesters have rich response dynamic behaviors, and diagnosing these response characteristics is crucial for promoting their application. This paper uses the analysis method of “0–1 test” to distinguish response characteristics of bistable and tristable vortex-induced vibration energy harvesters (VIVEHs), and the identification results are compared with the phase portraits, frequency spectrum and Lyapunov exponents. Results indicate that the analysis method of “0–1 test” can effectively distinguish the periodic and chaotic behaviors of the nonlinear VIVEHs by the trajectories of p-q, asymptotic growth rate K(c) and the mean square displacement Mc(n). Overall, this study indicates that the “0–1 test” method is feasible and reliable for identifying the dynamic characteristics of nonlinear vibration energy harvesters, which is meaningful to the optimization analysis of such harvesters.

Suggested Citation

  • Ma, Xiaoqing & Litak, Grzegorz & Zhou, Shengxi, 2025. "Using 0–1 test to diagnose periodic and chaotic motions of nonlinear vortex-induced vibration energy harvesters," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000499
    DOI: 10.1016/j.chaos.2025.116036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    2. Litak, G. & Syta, A. & Budhraja, M. & Saha, L.M., 2009. "Detection of the chaotic behaviour of a bouncing ball by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1511-1517.
    3. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
    4. Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    5. Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
    6. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    7. Arkadiusz Syta & Grzegorz Litak & Michael I. Friswell & Sondipon Adhikari, 2016. "Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(4), pages 1-7, April.
    8. Litak, Grzegorz & Syta, Arkadiusz & Wiercigroch, Marian, 2009. "Identification of chaos in a cutting process by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2095-2101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangchen Ren & Libin Tian & Hui Shen, 2025. "Influence of Potential Well Depth on the Dual−Coupling Beam Energy Harvester: Modeling and Experimental Validation," Energies, MDPI, vol. 18(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
    2. Belaire-Franch, Jorge, 2020. "The finite sample behavior of the 0–1 test for chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    3. Tan, Dongguo & Ou, Xu & Zhou, Jiaxi & Wang, Kai & Pan, Hongbin & Peng, Jian & Sun, Hongxin, 2025. "Magnetic tri-stable triboelectric nanogenerator for harvesting energy from low-frequency vibration," Renewable Energy, Elsevier, vol. 243(C).
    4. Ding, Shun-Liang & Song, En-Zhe & Yang, Li-Ping & Litak, Grzegorz & Yao, Chong & Ma, Xiu-Zhen, 2016. "Investigation on nonlinear dynamic characteristics of combustion instability in the lean-burn premixed natural gas engine," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 99-110.
    5. Jing, Hao & Xiang, Hongjun & Wang, Jingyan, 2025. "Enhancing wind energy harvesting performance through staggered dual cylinders inspired by migrant bird lift sharing effect," Renewable Energy, Elsevier, vol. 246(C).
    6. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    7. Wang, Jingyan & Xiang, Hongjun & Jing, Hao & Zhu, Yijiang & Zhang, Zhiwei, 2025. "Stochastic analysis for vortex-induced vibration piezoelectric energy harvesting in incoming wind turbulence," Applied Energy, Elsevier, vol. 377(PC).
    8. Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    9. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    10. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    11. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Yurchenko, Daniil & Wolszczak, Piotr & Dymarek, Andrzej & Dzitkowski, Tomasz, 2023. "Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Xue, Xinxin & Xiang, Hongjun & Ci, Yiman & Wang, Jingyan, 2025. "A sustainable galloping piezoelectric energy harvesting wind barrier for power generation on railway bridges," Energy, Elsevier, vol. 320(C).
    13. Zeng, Xianming & Wu, Nan & Fu, Jiyang & He, Yuncheng & Dai, Xiaolong, 2024. "Design, modeling and experiments of bistable wave energy harvester with directional self-adaptive characteristics," Energy, Elsevier, vol. 311(C).
    14. Zheng, Tianyu & Ren, He & Zhang, Zhongcai & Li, Haitao & Qin, Weiyang & Yurchenko, Daniil, 2025. "Improving the wind energy harvesting performance with double upstream fractal bluff bodies," Renewable Energy, Elsevier, vol. 239(C).
    15. Zhang, Haiwei & Qin, Weiyang & Zhou, Zhiyong & Zhu, Pei & Du, Wenfeng, 2023. "Piezomagnetoelastic energy harvesting from bridge vibrations using bi-stable characteristics," Energy, Elsevier, vol. 263(PC).
    16. Litak, G. & Syta, A. & Budhraja, M. & Saha, L.M., 2009. "Detection of the chaotic behaviour of a bouncing ball by the 0–1 test," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1511-1517.
    17. Hai Dang Le & Soon-Duck Kwon, 2021. "Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays," Energies, MDPI, vol. 14(19), pages 1-14, September.
    18. Litak, Grzegorz & Sen, Asok K. & Syta, Arkadiusz, 2009. "Intermittent and chaotic vibrations in a regenerative cutting process," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2115-2122.
    19. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    20. Su, Bo & Guo, Tong & Alam, Md. Mahbub, 2025. "A review of wind energy harvesting technology: Civil engineering resource, theory, optimization, and application," Applied Energy, Elsevier, vol. 389(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.