Magnetic tri-stable triboelectric nanogenerator for harvesting energy from low-frequency vibration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122517
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
- Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Yang, Tao & Liu, Jiayi & Luo, Hongchun & Li, Zhixin, 2024. "Improving the performance of nonlinear isolator through triboelectric nanogenerator damper integrating energy harvesting," Energy, Elsevier, vol. 293(C).
- Yuan Chao Pan & Zhuhang Dai & Haoxiang Ma & Jinrong Zheng & Jing Leng & Chao Xie & Yapeng Yuan & Wencai Yang & Yaxiaer Yalikun & Xuemei Song & Chang Bao Han & Chenjing Shang & Yang Yang, 2024. "Self-powered and speed-adjustable sensor for abyssal ocean current measurements based on triboelectric nanogenerators," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Li, Jianwei & Wang, Guotai & Yang, Panpan & Wen, Yongshuang & Zhang, Leian & Song, Rujun & Hou, Chengwei, 2024. "An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration," Energy, Elsevier, vol. 286(C).
- Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
- Yar, Adem & Karabiber, Abdulkerim & Ozen, Abdurrahman & Ozel, Faruk & Coskun, Sahin, 2020. "Flexible nanofiber based triboelectric nanogenerators with high power conversion," Renewable Energy, Elsevier, vol. 162(C), pages 1428-1437.
- Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
- Qi, Lingfei & Li, Hai & Wu, Xiaoping & Zhang, Zutao & Duan, Wenjun & Yi, Minyi, 2021. "A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges," Renewable Energy, Elsevier, vol. 178(C), pages 1223-1235.
- Joung, Jaewon & Kang, Yong-Kwon & Nam, Yujin & Jeong, Jae-Weon, 2024. "Analysis of power generation considering design and finishing materials of thermoelectric energy harvesting blocks," Renewable Energy, Elsevier, vol. 231(C).
- Cai, Wenzheng & Roussinova, Vesselina & Stoilov, Vesselin, 2022. "Piezoelectric wave energy harvester," Renewable Energy, Elsevier, vol. 196(C), pages 973-982.
- Salman, Mohamed & Sorokin, Vladislav & Aw, Kean, 2024. "Systematic literature review of wave energy harvesting using triboelectric nanogenerator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Yar, Adem & Kınas, Zeynep & Karabiber, Abdulkerim & Ozen, Abdurrahman & Okbaz, Abdulkerim & Ozel, Faruk, 2021. "Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting," Renewable Energy, Elsevier, vol. 179(C), pages 1781-1792.
- Akhtar, Fayaz & Rehmani, Mubashir Husain, 2015. "Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 769-784.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
- Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
- Ma, Xiaoqing & Litak, Grzegorz & Zhou, Shengxi, 2025. "Using 0–1 test to diagnose periodic and chaotic motions of nonlinear vortex-induced vibration energy harvesters," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
- Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
- Min, Zhaowei & Du, Xuteng & Zhang, Xiaofan & Wu, Wentao & Shan, Xiaobiao & Xie, Tao, 2024. "Picking up railway track vibration energy using a novel doughnut-shaped piezoelectric energy harvester," Energy, Elsevier, vol. 310(C).
- Zeng, Xianming & Wu, Nan & Fu, Jiyang & He, Yuncheng & Dai, Xiaolong, 2024. "Design, modeling and experiments of bistable wave energy harvester with directional self-adaptive characteristics," Energy, Elsevier, vol. 311(C).
- Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
- Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
- Zheng, Tianyu & Ren, He & Zhang, Zhongcai & Li, Haitao & Qin, Weiyang & Yurchenko, Daniil, 2025. "Improving the wind energy harvesting performance with double upstream fractal bluff bodies," Renewable Energy, Elsevier, vol. 239(C).
- Sahraei, Nasim & Looney, Erin E. & Watson, Sterling M. & Peters, Ian Marius & Buonassisi, Tonio, 2018. "Adaptive power consumption improves the reliability of solar-powered devices for internet of things," Applied Energy, Elsevier, vol. 224(C), pages 322-329.
- Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Shi, Ge & Sun, Qichao & Xia, Yinshui & Jia, Shengyao & Pan, Jiaheng & Li, Qing & Wang, Xiudeng & Xia, Huakang & Wang, Binrui & Sun, Yanwei, 2024. "An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures," Energy, Elsevier, vol. 305(C).
- Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
- Zhang, Lu & Zheng, Haoyuan & Liu, Biao & Liang, Qiwei & Li, Kai & Liu, Junkao & Chen, Weishan, 2024. "A piezoelectric energy harvester for multi-type environments," Energy, Elsevier, vol. 305(C).
- Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
- Eswaran, U. & Ramiah, H. & Kanesan, J. & Reza, A.W., 2015. "Energy saving power amplifier design methodologies for mobile wireless communications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1721-1727.
- Min, Zhaowei & Chen, Yifeng & Shan, Xiaobiao & Xie, Tao, 2024. "A novel double-arch piezoelectric energy harvester for capturing railway track vibration energy," Energy, Elsevier, vol. 312(C).
- Ashraf Virk, Mati-ur-Rasool & Mysorewala, Muhammad Faizan & Cheded, Lahouari & Aliyu, AbdulRahman, 2022. "Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Wang, Jingyan & Xiang, Hongjun & Jing, Hao & Zhu, Yijiang & Zhang, Zhiwei, 2025. "Stochastic analysis for vortex-induced vibration piezoelectric energy harvesting in incoming wind turbulence," Applied Energy, Elsevier, vol. 377(PC).
- Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
More about this item
Keywords
Energy harvesting; Triboelectric nanogenerator; Magnetic tristability; Low frequency; Vibration energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s096014812500179x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.