IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp970-983.html
   My bibliography  Save this article

Electric vehicles in Spain: An overview of charging systems

Author

Listed:
  • Martínez-Lao, Juan
  • Montoya, Francisco G.
  • Montoya, Maria G.
  • Manzano-Agugliaro, Francisco

Abstract

The transportation sector is characterized by a high consumption of fossil fuels and a strong environmental impact. Promoting electric vehicles is an alternative to reduce and limit them move towards the sustainability of the automobile sector. In a short period of time, world car manufacturers have built, marketed and sold a million electric vehicles, and a million drivers got used to these new low carbon advanced technologies. Comparatively, this figure represents approximately the average annual sales of conventional vehicles in Spain. The main problem is the battery autonomy, since its maximum range does not exceed 250km, a restriction that limits the trip. Spain belongs to the group of countries which have longest trip average around 80km. Then the problem is how to understand electric mobility, for that the types and modes of charging, the types of electric vehicles, and the available charging systems all interact with one another in the charging systems for electric vehicles, which will be specifically analysed. Alternative charging methods are also presented, and the agents involved in the charging process in accordance with applicable regulations are identified. The objective of this article is to analyse the charging of electric vehicles in Spain and to assess the current situation to be able to propose potential improvements or implementation strategies. This paper determines that it is necessary to develop public policies for a structured implementation of charging stations in public places and in common-use areas within large shared spaces, such as parking areas and residential areas in order to improve electric mobility in Spain. This paper also illustrates the need to legislate standards for charging electric vehicles to maximize their implementation in Spain, with the goal of implementing electric vehicles on a larger scale and ultimately allowing society to benefit from the advantages of this technology.

Suggested Citation

  • Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:970-983
    DOI: 10.1016/j.rser.2016.11.239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116310152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Alfredo Ramírez Díaz & Francisco J. Ramos-Real & Gustavo A. Marrero & Yannick Perez, 2015. "Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife," Sustainability, MDPI, vol. 7(11), pages 1-27, November.
    4. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    5. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    6. Wolf-Peter, Schill, 2011. "Electric vehicles in imperfect electricity markets: The case of Germany," Energy Policy, Elsevier, vol. 39(10), pages 6178-6189, October.
    7. Dai, Haifeng & Guo, Pingjing & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan, 2015. "ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries," Energy, Elsevier, vol. 80(C), pages 350-360.
    8. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    9. Montoya, Francisco G. & García-Cruz, Amós & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2016. "Power quality techniques research worldwide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 846-856.
    10. Baran, Renato & Legey, Luiz Fernando Loureiro, 2013. "The introduction of electric vehicles in Brazil: Impacts on oil and electricity consumption," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 907-917.
    11. Carillo-Aparicio, Susana & Heredia-Larrubia, Juan R. & Perez-Hidalgo, Francisco, 2013. "SmartCity Málaga, a real-living lab and its adaptation to electric vehicles in cities," Energy Policy, Elsevier, vol. 62(C), pages 774-779.
    12. Bolívar Jaramillo, Lucas & Weidlich, Anke, 2016. "Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads," Applied Energy, Elsevier, vol. 169(C), pages 857-865.
    13. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    14. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    15. Wolf-Peter, Schill, 2011. "Electric vehicles in imperfect electricity markets: The case of Germany," Energy Policy, Elsevier, vol. 39(10), pages 6178-6189, October.
    16. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    17. Akhtar, Fayaz & Rehmani, Mubashir Husain, 2015. "Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 769-784.
    18. Maniatopoulos, Paul & Andrews, John & Shabani, Bahman, 2015. "Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 24-34.
    19. Ekman, Claus Krog, 2011. "On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case," Renewable Energy, Elsevier, vol. 36(2), pages 546-553.
    20. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    21. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Pietracho & Christoph Wenge & Stephan Balischewski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk & Damian Burzyński, 2021. "Potential of Using Medium Electric Vehicle Fleet in a Commercial Enterprise Transport in Germany on the Basis of Real-World GPS Data," Energies, MDPI, vol. 14(17), pages 1-23, August.
    2. González, L.G. & Siavichay, E. & Espinoza, J.L., 2019. "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 309-318.
    3. Nimesh, Vikas & Sharma, Debojit & Reddy, V. Mahendra & Goswami, Arkopal Kishore, 2020. "Implication viability assessment of shift to electric vehicles for present power generation scenario of India," Energy, Elsevier, vol. 195(C).
    4. Plananska, Jana & Gamma, Karoline, 2022. "Product bundling for accelerating electric vehicle adoption: A mixed-method empirical analysis of Swiss customers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    6. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    8. Syed Muhammad Arif & Tek Tjing Lie & Boon Chong Seet & Syed Muhammad Ahsan & Hassan Abbas Khan, 2020. "Plug-In Electric Bus Depot Charging with PV and ESS and Their Impact on LV Feeder," Energies, MDPI, vol. 13(9), pages 1-16, April.
    9. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Renewable Energy in Urban Areas: Worldwide Research Trends," Energies, MDPI, vol. 11(3), pages 1-19, March.
    10. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    11. Sini Han & Hyeon-Jin Kim & Duehee Lee, 2020. "A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    13. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    14. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    15. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    16. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    17. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    18. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    19. P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
    20. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    21. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    22. José Ángel López-Sánchez & Francisco Javier Garrido-Jiménez & Jose Luis Torres-Moreno & Alfredo Chofre-García & Antonio Gimenez-Fernandez, 2020. "Limitations of Urban Infrastructure for the Large-Scale Implementation of Electric Mobility. A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    2. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    5. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    6. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    7. Zulkarnain & Pekka Leviäkangas & Tuomo Kinnunen & Pekka Kess, 2014. "The Electric Vehicles Ecosystem Model: Construct, Analysis and Identification of Key Challenges," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(3 (Fall)), pages 253-277.
    8. Zhang, Yao & Chen, Wei & Gao, Weijun, 2017. "A survey on the development status and challenges of smart grids in main driver countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 137-147.
    9. Rae, Callum & Kerr, Sandy & Maroto-Valer, M. Mercedes, 2020. "Upscaling smart local energy systems: A review of technical barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Pesch, Thiemo & Allelein, Hans-Josef & Müller, Dirk & Witthaut, Dirk, 2020. "High-performance charging for the electrification of highway traffic: Optimal operation, infrastructure requirements and economic viability," Applied Energy, Elsevier, vol. 280(C).
    11. Christoph M. Flath & Jens P. Ilg & Sebastian Gottwalt & Hartmut Schmeck & Christof Weinhardt, 2014. "Improving Electric Vehicle Charging Coordination Through Area Pricing," Transportation Science, INFORMS, vol. 48(4), pages 619-634, November.
    12. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    14. Lin, Chen-Chun & Yang, Chia-Han & Shyua, Joseph Z., 2013. "A comparison of innovation policy in the smart grid industry across the pacific: China and the USA," Energy Policy, Elsevier, vol. 57(C), pages 119-132.
    15. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    16. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    17. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    18. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    19. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    20. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:970-983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.