IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3392-3403.html
   My bibliography  Save this article

New business models for electric cars--A holistic approach

Author

Listed:
  • Kley, Fabian
  • Lerch, Christian
  • Dallinger, David

Abstract

Climate change and global resource shortages have led to rethinking traditional individual mobility services based on combustion engines. As the consequence of technological improvements, the first electric vehicles are now being introduced and greater market penetration can be expected. But any wider implementation of battery-powered electrical propulsion systems in the future will give rise to new challenges for both the traditional automotive industry and other new players, e.g. battery manufacturers, the power supply industry and other service providers. Different application cases of electric vehicles are currently being discussed which means that numerous business models could emerge, leading to new shares in value creation and involving new players. Consequently, individual stakeholders are uncertain about which business models are really effective with regard to targeting a profitable overall concept. Therefore, this paper aims to define a holistic approach to developing business models for electric mobility, which analyzes the system as a whole on the one hand and provides decision support for affected enterprises on the other. To do so, the basic elements of electric mobility are considered and topical approaches to business models for various stakeholders are discussed. The paper concludes by presenting a systemic instrument for business models based on morphological methods.

Suggested Citation

  • Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3392-3403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002163
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrián Saldarriaga-Isaza, C. & Vergara, Carlos, 2009. "Who switches to hybrids? A study of a fuel conversion program in Colombia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 572-579, June.
    2. Chéron, Emmanuel & Zins, Michel, 1997. "Electric vehicle purchasing intentions: The concern over battery charge duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 235-243, May.
    3. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    4. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
    5. Francoise Nemry & Guillaume Leduc & Almudena Muñoz, 2009. "Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency," JRC Working Papers JRC54699, Joint Research Centre (Seville site).
    6. Lay, Gunter & Schroeter, Marcus & Biege, Sabine, 2009. "Service-based business concepts: A typology for business-to-business markets," European Management Journal, Elsevier, vol. 27(6), pages 442-455, December.
    7. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    8. Arnold Tukker, 2004. "Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet," Business Strategy and the Environment, Wiley Blackwell, vol. 13(4), pages 246-260, July.
    9. Dallinger, David & Krampe, Daniel & Wietschel, Martin, 2010. "Vehicle-to-grid regulation based on a dynamic simulation of mobility behavior," Working Papers "Sustainability and Innovation" S4/2010, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    11. Mandell, Svante, 2009. "Policies towards a more efficient car fleet," Energy Policy, Elsevier, vol. 37(12), pages 5184-5191, December.
    12. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
    13. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    14. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.
    15. Faruqui, Ahmad & George, Stephen S., 2002. "The Value of Dynamic Pricing in Mass Markets," The Electricity Journal, Elsevier, vol. 15(6), pages 45-55, July.
    16. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    17. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt5cc9g0jp, Institute of Transportation Studies, UC Davis.
    18. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    19. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    2. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    3. Mattes, Katharina & Lerch, Christian & Schröter, Marcus & Phan, Kim-Anh, 2011. "Anwendungsfelder mobiler Energiespeicher - Eine Bestandsaufnahme und Perspektiven für die Konzeption aussichtsreicher Geschäftsmodelle für Elektrofahrzeuge," Working Papers "Sustainability and Innovation" S2/2011, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    5. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    6. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    7. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    8. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    9. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    10. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    11. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    12. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    13. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    14. Tietze, Frank & Schiederig, Tim & Herstatt, Cornelius, 2011. "Firms' transition towards green product service system innovators," Working Papers 62, Hamburg University of Technology (TUHH), Institute for Technology and Innovation Management.
    15. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    16. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    17. Zhao, Yang & Tatari, Omer, 2015. "A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet," Energy, Elsevier, vol. 93(P2), pages 1277-1286.
    18. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
    19. Popović Vlado & Kilibarda Milorad & Andrejić Milan & Jereb Borut & Dragan Dejan & Keshavarzsaleh Abolfazl, 2018. "Electric Vehicles as Electricity Storages in Electric Power Systems," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 57-72, October.
    20. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3392-3403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.