IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt7vh184rw.html
   My bibliography  Save this paper

Are Batteries Ready for Plug-in Hybrid Buyers?

Author

Listed:
  • Axsen, Jonn
  • Burke, Andy
  • Kurani, Kenneth S

Abstract

The notion persists that battery technology and cost remain as barriers to commercialization of electric-drive passenger vehicles. Within the context of starting a market for plug-in hybrid electric vehicles (PHEVs), we explore two aspects of the purported problem: (1) PHEV performance goals and (2) the abilities of present and near-term battery chemistries to meet the resulting technological requirements. We summarize evidence stating that battery technologies do not meet the requirements that flow from three sets of influential PHEV goals due to inherent trade-offs among power, energy, longevity, cost, and safety. However, we also show that part of this battery problem is that those influential goals are overly ambitious compared to goals derived from consumers’ PHEV designs. We elicited PHEV designs from potential early buyers among U.S. new car buyers; most of those who are interested in a PHEV are interested in less technologically advanced PHEVs than assumed by experts. Using respondents’ PHEV designs, we derive peak power density and energy density requirements and show that current battery chemistries can meet them. By assuming too aggressive PHEV goals, existing policy initiatives, battery research, and vehicle development programs mischaracterize the batteries needed to start commercializing PHEVs. To answer the question whether batteries are ready for PHEVs, we must first answer the question, ‘‘whose PHEVs?’’

Suggested Citation

  • Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt7vh184rw
    as

    Download full text from publisher

    File URL: http://www.escholarship.org/uc/item/7vh184rw.pdf;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    2. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    3. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. " Constructive Consumer Choice Processes," Journal of Consumer Research, Oxford University Press, vol. 25(3), pages 187-217, December.
    4. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2008. "Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008," Institute of Transportation Studies, Working Paper Series qt1bp83874, Institute of Transportation Studies, UC Davis.
    5. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    3. Bruce Tonn & Paul Frymier & Jared Graves & Jessa Meyers, 2010. "A Sustainable Energy Scenario for the United States: Year 2050," Sustainability, MDPI, Open Access Journal, vol. 2(12), pages 1-31, November.
    4. Shang, Duo (Rick) & Sun, Guodong, 2016. "Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?," Energy Policy, Elsevier, vol. 95(C), pages 402-410.
    5. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    6. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    7. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    8. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    9. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    10. repec:gam:jeners:v:10:y:2017:i:11:p:1707-:d:116477 is not listed on IDEAS
    11. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea," Sustainability, MDPI, Open Access Journal, vol. 8(9), pages 1-18, September.
    12. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    13. Martos, A. & Pacheco-Torres, R. & Ordóñez, J. & Jadraque-Gago, E., 2016. "Towards successful environmental performance of sustainable cities: Intervening sectors. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 479-495.
    14. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    15. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    16. Barter, Garrett E. & Reichmuth, David & Westbrook, Jessica & Malczynski, Leonard A. & West, Todd H. & Manley, Dawn K. & Guzman, Katherine D. & Edwards, Donna M., 2012. "Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles," Energy Policy, Elsevier, vol. 46(C), pages 473-488.
    17. Fontaínhas, José & Cunha, Jorge & Ferreira, Paula, 2016. "Is investing in an electric car worthwhile from a consumers' perspective?," Energy, Elsevier, vol. 115(P2), pages 1459-1477.
    18. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    19. repec:gam:jsusta:v:10:y:2018:i:3:p:662-:d:134182 is not listed on IDEAS
    20. repec:kap:transp:v:44:y:2017:i:4:d:10.1007_s11116-016-9675-9 is not listed on IDEAS
    21. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    22. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.

    More about this item

    Keywords

    UCD-ITS-RP-10-08; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt7vh184rw. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: http://edirc.repec.org/data/itucdus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.