IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01424460.html
   My bibliography  Save this paper

Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife

Author

Listed:
  • Alfredo Ramírez-Díaz

    (Universidad de La Laguna - Centro de Productos Naturales Organicos)

  • Francisco Ramos-Real

    (Universidad de La Laguna - Centro de Productos Naturales Organicos)

  • Gustavo Marrero

    (Universidad de La Laguna - Centro de Productos Naturales Organicos)

  • Yannick Perez

    () (UP11 - Université Paris-Sud - Paris 11, LGI - Laboratoire Génie Industriel - EA 2606 - CentraleSupélec)

Abstract

Isolated regions are highly dependent on fossil fuels. The use of endogenous sources and the improvement in energy efficiency in all of the consumption activities are the two main ways to reduce the dependence of petroleum-derived fuels. Tenerife offers an excellent renewable resource (hours of sun and wind). However, the massive development of these technologies could cause important operational problems within the electric power grids, because of the small size of the system. In this paper, we explore the option of coupling an electric vehicle fleet as a distributed energy storage system to increase the participation of renewables in an isolated power system, i.e., Tenerife Island. A model simulator has been used to evaluate five key outputs, that is the renewable share, the energy spilled, the CO 2 emissions, the levelized cost of generating electricity and fuel OPEN ACCESS Sustainability 2015, 7 2 dependence, under alternative scenarios. Comparing to the current situation, combining a gradual renewable installed capacity and the introduction of an electric vehicle fleet using alternative charging strategies, a total of 30 different scenarios have been evaluated. Results shows that the impact of 50,000 electric vehicles would increase the renewable share in the electricity mix of the island up to 30%, reduce CO 2 emissions by 27%, the total cost of electric generation by 6% and the oil internal market by 16%.

Suggested Citation

  • Alfredo Ramírez-Díaz & Francisco Ramos-Real & Gustavo Marrero & Yannick Perez, 2015. "Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife," Post-Print hal-01424460, HAL.
  • Handle: RePEc:hal:journl:hal-01424460
    DOI: 10.3390/su70x000x
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-01424460
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-01424460/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perez, Yannick & Ramos Real, Francisco Javier, 2008. "How to make a European integrated market in small and isolated electricity systems? The case of the Canary Islands," Energy Policy, Elsevier, vol. 36(11), pages 4159-4167, November.
    2. Rious, Vincent & Perez, Yannick, 2014. "Review of supporting scheme for island powersystem storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 754-765.
    3. Gustavo A. Marrero & Yannick Perez & Marc Petit & Francisco Javier Ramos-Real, 2015. "Electric vehicle fleet contributions for isolated systems. The case of the Canary Islands," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 15(2), pages 171-193.
    4. Marrero, Gustavo A. & Ramos-Real, Francisco Javier, 2010. "Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2808-2818, December.
    5. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    6. Yannick Perez, 2014. "Willingness to pay for the electric vehicle and their attributes in Canary Islands," Post-Print hal-01660372, HAL.
    7. Ramos-Real, Francisco Javier & Moreno-Piquero, Juan Carlos & Ramos-Henriquez, Jose Manuel, 2007. "The effects of introducing natural gas in the Canary Islands for electricity generation," Energy Policy, Elsevier, vol. 35(7), pages 3925-3935, July.
    8. Sándor Szabó & Ioannis Kougias & Magda Moner-Girona & Katalin Bódis, 2015. "Sustainable Energy Portfolios for Small Island States," Sustainability, MDPI, Open Access Journal, vol. 7(9), pages 1-19, September.
    9. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    10. Elahee, Mohammad Khalil, 2011. "Sustainable energy policy for small-island developing state: Mauritius," Utilities Policy, Elsevier, vol. 19(2), pages 71-79, June.
    11. Weisser, Daniel, 2004. "Power sector reform in small island developing states: what role for renewable energy technologies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 101-127, April.
    12. Camus, Cristina & Farias, Tiago, 2012. "The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study," Energy Policy, Elsevier, vol. 43(C), pages 153-165.
    13. Guerrero-Lemus, Ricardo & González-Díaz, Benjamín & Ríos, Gerardo & Dib, Ramzi N., 2015. "Study of the new Spanish legislation applied to an insular system that has achieved grid parity on PV and wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 426-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingwu Gong & Jiazhi Lei, 2017. "Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation," Sustainability, MDPI, Open Access Journal, vol. 9(3), pages 1-15, March.
    2. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, Open Access Journal, vol. 8(12), pages 1-15, November.
    3. repec:gam:jsusta:v:9:y:2017:i:5:p:700-:d:97121 is not listed on IDEAS
    4. repec:eee:rensus:v:77:y:2017:i:c:p:970-983 is not listed on IDEAS

    More about this item

    Keywords

    energy storage system; Canary Islands; renewable energy; vehicle to grid; electric vehicles; isolated system;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01424460. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.