Enhancing wind energy harvesting performance through staggered dual cylinders inspired by migrant bird lift sharing effect
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122905
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Shao, Nan & Lian, JiJian & Yan, Xiang & Liu, Fang & Wang, Xiaoqun, 2022. "Experimental study on energy conversion of flow induced motion for two triangular prisms in staggered arrangement," Energy, Elsevier, vol. 249(C).
- Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
- Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
- Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).
- Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
- Usman, Muhammad & Hanif, Asad & Kim, In-Ho & Jung, Hyung-Jo, 2018. "Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum," Energy, Elsevier, vol. 153(C), pages 882-889.
- Kuang, Zhenli & Zhang, Zhonghua & Liao, Weilin & Lin, Shijie & Wang, Kai & Zhang, Jiaqi & Kan, Junwu, 2024. "Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion," Energy, Elsevier, vol. 308(C).
- Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
- Zheng, Tianyu & Ren, He & Zhang, Zhongcai & Li, Haitao & Qin, Weiyang & Yurchenko, Daniil, 2025. "Improving the wind energy harvesting performance with double upstream fractal bluff bodies," Renewable Energy, Elsevier, vol. 239(C).
- Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
- Ma, Chao & Wu, Zhichuan & Yan, Xiang & Li, Peiyao & Shao, Nan & Liu, Fang & Wang, Xiaoqun, 2025. "Hydrokinetic energy conversion from flow-induced motion by two rigidly coupled triangular prisms with variable excitation voltage," Energy, Elsevier, vol. 322(C).
- Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Wang, Junlei & Zhang, Chengyun & Hu, Guobiao & Liu, Xiaowei & Liu, Huadong & Zhang, Zhien & Das, Raj, 2022. "Wake galloping energy harvesting in heat exchange systems under the influence of ash deposition," Energy, Elsevier, vol. 253(C).
- Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
- Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
- Zhu, Mengsong & Kuang, Zhenli & Jiang, Yanxin & Cao, Mengqi & Liao, Weilin & Wang, Shuyun & Kan, Junwu & Zhang, Zhonghua, 2025. "Piezoelectric energy harvesting from wind-induced vibration under the interference of the double-casement window-like baffle," Energy, Elsevier, vol. 324(C).
- Ma, Xiaoqing & Litak, Grzegorz & Zhou, Shengxi, 2025. "Using 0–1 test to diagnose periodic and chaotic motions of nonlinear vortex-induced vibration energy harvesters," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
- Su, Bo & Guo, Tong & Alam, Md. Mahbub, 2025. "A review of wind energy harvesting technology: Civil engineering resource, theory, optimization, and application," Applied Energy, Elsevier, vol. 389(C).
- Zhang, Baoshou & Li, Boyang & Li, Canpeng & Yu, Haidong & Wang, Dezheng & Shi, Renhe, 2023. "Effects of variable damping on hydrokinetic energy conversion of a cylinder using wake-induced vibration," Renewable Energy, Elsevier, vol. 213(C), pages 176-194.
- Li, Peng & Hao, Lianhong & Liu, Zhen & Wang, Yu & Han, Xinyu & Ren, Xiaohui & Lv, Yongxin & Lou, Min & Huang, Yijie, 2025. "Experimental investigation on energy conversion and vortex-induced vibration suppression of marine risers with turbine-type external devices," Energy, Elsevier, vol. 314(C).
- Kuang, Zhenli & Zhang, Zhonghua & Liao, Weilin & Lin, Shijie & Wang, Kai & Zhang, Jiaqi & Kan, Junwu, 2024. "Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion," Energy, Elsevier, vol. 308(C).
- Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
- Yin, Peilun & Tang, Lihua & Li, Zhongjie & Xia, Cuipeng & Li, Zifan & Aw, Kean Chin, 2025. "Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter-rotations," Applied Energy, Elsevier, vol. 377(PB).
- Lo, Jonathan C.C. & Thompson, Mark C. & Hourigan, Kerry & Zhao, Jisheng, 2024. "Order of magnitude increase in power from flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
- Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005671. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.