IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016251.html
   My bibliography  Save this article

Piezoelectric energy harvesting from wind-induced vibration under the interference of the double-casement window-like baffle

Author

Listed:
  • Zhu, Mengsong
  • Kuang, Zhenli
  • Jiang, Yanxin
  • Cao, Mengqi
  • Liao, Weilin
  • Wang, Shuyun
  • Kan, Junwu
  • Zhang, Zhonghua

Abstract

The exploration of miniature piezoelectric wind energy harvesters has garnered considerable attention as a means to fulfill the autonomous powering demands of wireless sensor networks. The study presents piezoelectric energy harvesting from wind-induced vibration under the interference of the double-casement window-like baffle (DW-PWVEH). By adjusting the opening angle of the baffle, the flow field distribution can be flexibly modulated, thereby regulating vibration amplitude of the bluff body and enhancing the power generation capability of the DW-PWVEH at low wind speeds. CFD simulation and experimental tests confirm the feasibility of the harvester. The results demonstrate that the opening angle and position of the baffle (with a length-to-height ratio of 4:7) significantly influence the output performance of the DW-PWVEH. Appropriately increasing the opening angle enhances vibration of the bluff body at low wind speeds while suppressing its amplitude at high wind speeds. Under conditions of an opening angle θ = 30°, a distance-diameter ratio α = 0.56 (the ratio of the distance between the baffle and the bluff body to the diameter of the bluff body), and a length ratio β = 0.43 (the ratio of length between piezoelectric vibrator and cantilever beam), the maximum output voltage achieved is 37.5 V, with a cut-in wind speed of 0.6 m/s. The power output of a single piezoelectric transducer reaches 0.41 mW, which can continuously supply power to about 100 LEDs in series and power electronic thermometers and LED screens. This research holds significant implications for enhancing the energy harvesting efficiency of flow-induced vibration-based energy harvesters.

Suggested Citation

  • Zhu, Mengsong & Kuang, Zhenli & Jiang, Yanxin & Cao, Mengqi & Liao, Weilin & Wang, Shuyun & Kan, Junwu & Zhang, Zhonghua, 2025. "Piezoelectric energy harvesting from wind-induced vibration under the interference of the double-casement window-like baffle," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016251
    DOI: 10.1016/j.energy.2025.135983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Junwu & Wang, Jin & Meng, Fanxu & He, Chenyang & Li, Shengjie & Wang, Shuyun & Zhang, Zhonghua, 2023. "A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle," Energy, Elsevier, vol. 262(PA).
    2. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    3. Xie, Xiangdong & Li, Lingjie & Huang, Lin & Wang, Junjie & Zhou, Kai & Du, Xiaozhen, 2025. "A study on the energy harvesting performance and corresponding theoretical models of piezoelectric seismic energy harvesters," Applied Energy, Elsevier, vol. 377(PB).
    4. Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).
    5. Rojas, E.F. & Faroughi, S. & Abdelkefi, A. & Park, Y.H., 2021. "Investigations on the performance of piezoelectric-flexoelectric energy harvesters," Applied Energy, Elsevier, vol. 288(C).
    6. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    7. Xie, Xiangdong & Zhang, Jiankun & Wang, Zijing & Li, Lingjie & Du, Guofeng, 2024. "The effect of magnetic proof masses on the energy harvesting bandwidth of piezoelectric coupled cantilever array," Applied Energy, Elsevier, vol. 353(PA).
    8. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    9. Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
    10. Kuang, Zhenli & Zhang, Zhonghua & Liao, Weilin & Lin, Shijie & Wang, Kai & Zhang, Jiaqi & Kan, Junwu, 2024. "Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion," Energy, Elsevier, vol. 308(C).
    11. Kazemi, Shahriar & Nili-Ahmadabadi, Mahdi & Tavakoli, Mohammad Reza & Tikani, Reza, 2021. "Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester," Renewable Energy, Elsevier, vol. 179(C), pages 528-536.
    12. Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
    13. Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Shijie & Kan, Junwu & He, Chenyang & Yu, Yiyong & Yang, Zemeng & Zhang, Li & Fu, Jiawei & Zhang, Zhonghua, 2025. "A direction-parallel piezoelectric wind-induced vibration energy harvester with the transducer movement oriented toward wind direction for pipeline energy harvesting," Energy, Elsevier, vol. 319(C).
    2. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    3. Zheng, Tianyu & Ren, He & Zhang, Zhongcai & Li, Haitao & Qin, Weiyang & Yurchenko, Daniil, 2025. "Improving the wind energy harvesting performance with double upstream fractal bluff bodies," Renewable Energy, Elsevier, vol. 239(C).
    4. Kuang, Zhenli & Zhang, Zhonghua & Liao, Weilin & Lin, Shijie & Wang, Kai & Zhang, Jiaqi & Kan, Junwu, 2024. "Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion," Energy, Elsevier, vol. 308(C).
    5. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    6. Hou, Chengwei & Shan, Xiaobiao & Du, Xuteng & Chen, Yifeng & Zhang, Xiaofan & Xie, Tao, 2025. "An enhanced performance scythe-shaped bending-torsion coupling wind energy harvester excited by magnetic force," Energy, Elsevier, vol. 321(C).
    7. Zeng, Xianming & Wu, Nan & Fu, Jiyang & He, Yuncheng & Dai, Xiaolong, 2024. "Design, modeling and experiments of bistable wave energy harvester with directional self-adaptive characteristics," Energy, Elsevier, vol. 311(C).
    8. Wang, Junlei & Zhang, Chengyun & Hu, Guobiao & Liu, Xiaowei & Liu, Huadong & Zhang, Zhien & Das, Raj, 2022. "Wake galloping energy harvesting in heat exchange systems under the influence of ash deposition," Energy, Elsevier, vol. 253(C).
    9. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    10. Zhang, Mingjie & Abdelkefi, Abdessattar & Yu, Haiyan & Ying, Xuyong & Gaidai, Oleg & Wang, Junlei, 2021. "Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters," Applied Energy, Elsevier, vol. 302(C).
    11. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    12. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    13. Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
    14. Du, Wenfeng & Liang, Lutong & Zhou, Zhiyong & Qin, Weiyang & Huang, Haobo & Cao, Di, 2024. "Enhancing piezoelectric energy harvesting from the flow-induced vibration of an apple-shaped bluff body based on topology optimization," Energy, Elsevier, vol. 307(C).
    15. Li, Peng & Hao, Lianhong & Liu, Zhen & Wang, Yu & Han, Xinyu & Ren, Xiaohui & Lv, Yongxin & Lou, Min & Huang, Yijie, 2025. "Experimental investigation on energy conversion and vortex-induced vibration suppression of marine risers with turbine-type external devices," Energy, Elsevier, vol. 314(C).
    16. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    17. Liu, Shibo & Zhang, Lijun & Lu, Jiahui & Zhang, Xu & Wang, Kaifei & Gan, Zhenwei & Liu, Xiao & Jing, Zhengjun & Cui, Xudong & Wang, Hang, 2025. "Advances in urban wind resource development and wind energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    19. Hou, Chengwei & Du, Xuteng & Dang, Shuai & Shan, Xiaobiao & Elsamanty, Mahmoud & Guo, Kai & Xie, Tao, 2024. "A broadband and multiband magnetism-plucked rotary piezoelectric energy harvester," Energy, Elsevier, vol. 302(C).
    20. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.