IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014113.html
   My bibliography  Save this article

An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads

Author

Listed:
  • Zhang, Tingsheng
  • Kong, Lingji
  • Zhu, Zhongyin
  • Wu, Xiaoping
  • Li, Hai
  • Zhang, Zutao
  • Yan, Jinyue

Abstract

Vibration energy harvesting technology is characterized by wide distribution, is pollution-free and independent of weather and climate, and is suitable for powering low-power sensors to ensure efficient and safe operation in freight railroads. This paper proposed an electromagnetic vibration energy harvester based on a series coupling input mechanism for the self-powered sensors in freight railroads. The design utilizes only one rack for vibration energy input to minimize the moment acting on the vibration source during the working process. Two pinions meshed with the rack convert the up and down vibrations into a two-way rotation. The one-way bearings and another pair of gears convert the opposite rotations of two parallel shafts into one-way rotation of the generator shaft, generating electricity. Supercapacitors and rectifier voltage regulator modules are utilized to store electrical energy efficiently. A peak power of 10.219 W and maximum mechanical efficiency of 64.31% is obtained in the experiment equipped with a flywheel under the 8 mm-4 Hz sinusoidal vibration excitation. The experimental results showed that the flywheel can enable the proposed harvester to achieve better power generation performance when the amplitude and frequency are relatively high.

Suggested Citation

  • Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014113
    DOI: 10.1016/j.apenergy.2023.122047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.