IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics0360544220326669.html
   My bibliography  Save this article

Efficient piezoelectric harvester for random broadband vibration of rail

Author

Listed:
  • Yang, Fan
  • Gao, Mingyuan
  • Wang, Ping
  • Zuo, Jianyong
  • Dai, Jun
  • Cong, Jianli

Abstract

The railway track dynamic behavior shows intense characteristics in a wide frequency domain, which plays an major role in the generation of wheel-rail rolling noise and the deterioration of track structure. To monitor, study, and control the random vibration of the track system, sensors and harvesters were considered as important techniques of vibration monitoring and energy conversion to maintain the healthy service of railway system. Therefore, effectively scavenging the broadband track vibration energy has significant potential to power trackside monitoring sensor and reduce track vibration. This paper presents an efficient rail-borne piezoelectric energy harvester to collect energy from the random railway vibration in a broad frequency range, and the fractional derivative electromechanical coupling model of the coupled vehicle-track-harvester system was firstly established. The proposed piezoelectric harvester was evaluated by laboratory experiments and theoretical piezoelectric analysis with finite element method. The results indicate that the vibration reduction effect of the efficient rail-borne energy harvester is 196 times greater than the ordinary harvester in high-frequency range. Although the open-circuit voltage can be improved by increasing the thickness of the piezoelectric layer, the maximum output power remains unchanged as 1.03 W/Hz. Constrained by the safety limit of stress and deformation of the piezoelectric material, the harvester can be designed by a programmable methodology according to the rail frequency response in a wide frequency range. The output power peaks at the first two resonance frequencies are obtained as 1036.9 μW/Hz, and 8.01 μW/Hz, respectively, and the maximum values are improved by 3.0 and 15.0 times with comparison to the ordinary harvester, respectively.

Suggested Citation

  • Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326669
    DOI: 10.1016/j.energy.2020.119559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    2. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    3. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    4. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    5. Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
    6. Xie, X.D. & Wang, Q. & Wang, S.J., 2015. "Energy harvesting from high-rise buildings by a piezoelectric harvester device," Energy, Elsevier, vol. 93(P2), pages 1345-1352.
    7. Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
    8. Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
    9. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    10. Gao, Mingyuan & Su, Chengguang & Cong, Jianli & Yang, Fan & Wang, Yifeng & Wang, Ping, 2019. "Harvesting thermoelectric energy from railway track," Energy, Elsevier, vol. 180(C), pages 315-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    2. Zhang, Duo & Zhou, Fang-Ru & Tang, Yin-Ying & Tao, Zi-Yu & Peng, Qi-Yuan, 2023. "Optimization of the loading plan for a railway wagon from the perspectives of running safety and energy conservation," Energy, Elsevier, vol. 280(C).
    3. Yu, Han & Hou, Chengwei & Shan, Xiaobiao & Zhang, Xingxu & Song, Henan & Zhang, Xiaofan & Xie, Tao, 2022. "A novel seesaw-like piezoelectric energy harvester for low frequency vibration," Energy, Elsevier, vol. 261(PB).
    4. Hong, Seong Do & Ahn, Jung Hwan & Kim, Kyung-Bum & Kim, Jeong Hun & Cho, Jae Yong & Woo, Min Sik & Song, Yewon & Hwang, Wonseop & Jeon, Deok Hwan & Kim, Jihoon & Jeong, Se Yeong & Woo, Sang Bum & Ryu,, 2022. "Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism," Energy, Elsevier, vol. 239(PA).
    5. Maroofiazar, Rasool & Fahimi Farzam, Maziar, 2021. "Experimental investigation of energy harvesting from sloshing phenomenon: Comparison of Newtonian and non-Newtonian fluids," Energy, Elsevier, vol. 225(C).
    6. Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
    7. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    8. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    9. Zhang, Duo & Tang, Yin-Ying & Peng, Qi-Yuan, 2023. "A novel approach for decreasing driving energy consumption during coasting and cruise for the railway vehicle," Energy, Elsevier, vol. 263(PA).
    10. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    11. Lai, Zhihui & Xu, Junchen & Fang, Shitong & Qiao, Zijian & Wang, Suo & Wang, Chen & Huang, Zhangjun & Zhou, Shengxi, 2023. "Energy harvesting from a hybrid piezo-dielectric vibration energy harvester with a self-priming circuit," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    2. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    4. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    5. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
    6. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    7. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    8. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    9. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    10. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
    11. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
    12. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    13. Le Scornec, Julien & Guiffard, Benoit & Seveno, Raynald & Le Cam, Vincent & Ginestar, Stephane, 2022. "Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 184(C), pages 551-563.
    14. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    16. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    17. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
    18. Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
    19. Zhang, Duo & Zhou, Fang-Ru & Tang, Yin-Ying & Tao, Zi-Yu & Peng, Qi-Yuan, 2023. "Optimization of the loading plan for a railway wagon from the perspectives of running safety and energy conservation," Energy, Elsevier, vol. 280(C).
    20. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.