IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034011.html
   My bibliography  Save this article

Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances

Author

Listed:
  • Sani, Godwin
  • Balaram, Bipin
  • Kudra, Grzegorz
  • Awrejcewicz, Jan

Abstract

A severe limitation of energy harvesting from friction-induced vibrations in vehicle brakes is that the voltage generated is significant only at low vehicle speeds. The present work suggests a strategy to overcome this limitation by the utilisation of ambient vibrations resulting from rotary unbalances of vehicle components. A realistic model for vibrations in the brake pad of a disc brake under the action of rotary unbalance is used. The brake pad vibration is modelled using a non-smooth stick–slip oscillator in the presence of Stribeck friction. A weightless shaft of rectangular cross-section rotating at constant angular speed and having an unbalanced mass concentrated at its centre is used to model rotary unbalances. It is shown that the rotary unbalance provides parametric excitation to the brake pad mass undergoing friction-induced self-excited vibration leading to synchronising patterns via Neimark–Sacker bifurcation. Such synchronisation is successful in ensuring steady voltage generation over a much wider speed bandwidth. The qualitative nature of the different solution regimes interspersed with periodic intervals are determined by Lyapunov exponents. The technique used to arrive at the Lyapunov exponents in the present discontinuous model is outlined, and MATLAB code for the same is provided in the appendix.

Suggested Citation

  • Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034011
    DOI: 10.1016/j.energy.2023.130007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.