IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1146-1155.html
   My bibliography  Save this article

Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite

Author

Listed:
  • Alluri, Nagamalleswara Rao
  • Selvarajan, Sophia
  • Chandrasekhar, Arunkumar
  • Saravanakumar, Balasubramaniam
  • Lee, Gae Myoung
  • Jeong, Ji Hyun
  • Kim, Sang-Jae

Abstract

A laterally aligned flexible composite linear worm-based piezoelectric energy harvester made up of piezoelectric barium titanate nanoparticles and a three dimensional gel network of calcium alginate biopolymer was aimed to harness the low frequency mechanical energy. It is highly desirable to fabricate innovative micro/nanostructures for high performance energy harvesting beyond the conventional thin films, and small scale fabrication of nanowires (or rods). The open circuit voltage of a single composite worm-based energy harvester (diameter ≈ 550 μm, length ≈ 2.5 cm) increases up to 5 times by increasing the frequency of mechanical load (11 N) from 3 to 20 Hz. Similarly, 1.5 times voltage increment was observed by increasing the length of the composite worm from 1.5 to 3.5 cm upon the bio-mechanical hand force. The energy harvester can function as an efficient portable/wearable self-powered device due to its good flexibility, and multiple lengths of composite linear worms can be utilized to drive low-power electronic devices. In this work, the composite worms were prepared by an ionotropic gelation approach, which is eco-friendly, non-toxic, having low processing temperature/time, and potential for cost-effective, large-scale fabrication, making it suitable for low frequency based self-powered devices.

Suggested Citation

  • Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1146-1155
    DOI: 10.1016/j.energy.2016.10.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Siyang & Pei, Jun & Liu, Dawei & Bao, Liangliang & Li, Jing-Feng & Wu, Huaqiang & Li, Liangliang, 2016. "Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering," Energy, Elsevier, vol. 113(C), pages 35-43.
    2. Azizi, Saber & Ghodsi, Ali & Jafari, Hamid & Ghazavi, Mohammad Reza, 2016. "A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester," Energy, Elsevier, vol. 96(C), pages 495-506.
    3. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    4. Xie, X.D. & Wang, Q., 2015. "Energy harvesting from a vehicle suspension system," Energy, Elsevier, vol. 86(C), pages 385-392.
    5. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nordmeier, Akira & Chidambaram, Dev, 2018. "Use of Zymomonas mobilis immobilized in doped calcium alginate threads for ethanol production," Energy, Elsevier, vol. 165(PB), pages 603-609.
    2. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    2. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    3. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    4. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    5. Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
    6. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    7. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    8. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
    9. Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
    10. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
    12. Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
    13. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    14. Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
    15. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    16. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    17. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    18. Zhongxian Chen & Xu Li & Yingjie Cui & Liwei Hong, 2022. "Modeling, Experimental Analysis, and Optimized Control of an Ocean Wave Energy Conversion System in the Yellow Sea near Lianyungang Port," Energies, MDPI, vol. 15(23), pages 1-16, November.
    19. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    20. Banerjee, Shreya & Roy, Sitikantha, 2018. "A dimensionally reduced order piezoelectric energy harvester model," Energy, Elsevier, vol. 148(C), pages 112-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1146-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.