IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014460.html
   My bibliography  Save this article

Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management

Author

Listed:
  • Zou, Hong-Xiang
  • Zhu, Quan-Wei
  • He, Jia-Yi
  • Zhao, Lin-Chuan
  • Wei, Ke-Xiang
  • Zhang, Wen-Ming
  • Du, Rong-Hua
  • Liu, Sheng

Abstract

Energy harvesting from streets, squares, and other areas to supply power to equipment and systems in these environments is environmentally friendly and more convenient for functions requiring low power consumption. To harvest more pulsed mechanical energy and improve the quality of electrical output for immediate utilization, we propose a bidirectional energy harvesting floor with a sustained-release regulation mechanism (BEHF-SRM). The pulse and irregular excitation on the road can be converted into continuous unidirectional rotation of the working wheel and the reset motion of the system can also drive the work wheel unidirectional rotation, and the rotational kinetic energy is slowly converted into electrical energy. A dynamic model is established and validated experimentally. One person can easily light up 20 LED bulbs (rated power 1 W) by stepping on the prototype of BEHF-SRM. The prototype can continue to provide electricity for about 7 s after stepping on it. Self-powered automated pedestrian crosswalk warnings that can improve pedestrian safety was demonstrated based on BEHF-SRM. The results show that the proposed harvester has the potential to provide a sustainable, convenient, green, and zero carbon energy supply to smart transport and smart cities.

Suggested Citation

  • Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014460
    DOI: 10.1016/j.apenergy.2023.122082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.