IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics030626192500491x.html
   My bibliography  Save this article

Electromechanical modeling and experimental validation of an origami-structured triboelectric vibration energy harvester

Author

Listed:
  • Liu, Zicheng
  • Hu, Guobiao
  • Wang, Yawei
  • Yoon, Heesoo
  • Zhao, Chaoyang
  • Li, Xin
  • Yang, Yaowen

Abstract

This study presents a novel electromechanical model and its experimental validation for an origami-structured triboelectric energy harvester (OTEH) designed to scavenge kinetic energy from vibration. OTEHs are recognized for their enhanced electrical output due to increased contact areas from stacked structures, but their electromechanical modeling remains largely unexplored due to geometric complexity. Furthermore, few studies have investigated the use of OTEHs for harvesting vibration energy. To address these gaps, we developed an electromechanical model specifically tailored for vibration energy harvesting using OTEHs. The model integrates an electrical model for triangular non-parallel contact surfaces with a lumped-parameter mechanical model, incorporating origami geometric parameters for broad applicability. We experimentally validated the model using a bellow-origami-structured triboelectric energy harvester (BOTEH) designed for vibration energy harvesting. Benefiting from axial elasticity and a guiding rod, the BOTEH structure can be excited by harmonic base vibration, enabling a systematic investigation of its vibration-energy-harvesting potential. The model, validated through time-domain and frequency-domain voltage and displacement responses under various vibratory conditions, accurately predicts the BOTEH's dynamic behavior. Additionally, under base forcing vibration, the BOTEH demonstrated practical utility by triggering an Internet-of-Things (IoT) temperature sensor and illuminating 24 LEDs, achieving a maximum output power of 119 μW at 6.6 Hz and 0.8 g with an 80 MΩ external resistor.

Suggested Citation

  • Liu, Zicheng & Hu, Guobiao & Wang, Yawei & Yoon, Heesoo & Zhao, Chaoyang & Li, Xin & Yang, Yaowen, 2025. "Electromechanical modeling and experimental validation of an origami-structured triboelectric vibration energy harvester," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500491x
    DOI: 10.1016/j.apenergy.2025.125761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500491X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    2. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    3. Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
    4. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    5. Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
    7. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    2. Shi, Runye & Yan, Zhengshun & Fang, Shitong & Qiao, Zijian & Xiao, Shiyi & Lei, Jiaoyu & Wang, Zhouzhou & Xu, Bin & Lai, Zhihui, 2024. "Research on a self-powered rolling bearing fault diagnosis method with a piezoelectric generator for self-sensing," Applied Energy, Elsevier, vol. 376(PA).
    3. Xu, Pengcheng & Shen, Hui & Li, Jing & Zhang, Chun & Guan, Dong, 2023. "Power bonding diagram model and parameter analysis of contact-separation mode triboelectric nanogenerator," Energy, Elsevier, vol. 279(C).
    4. Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    6. Chen, Keyu & Fang, Shitong & Lai, Zhihui & Cao, Junyi & Liao, Wei-Hsin, 2024. "A plucking rotational energy harvester with tapered thickness and auxetic structures for increasing power output," Applied Energy, Elsevier, vol. 357(C).
    7. Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
    8. Masabi, Sayed Nahiyan & Fu, Hailing & Flint, James A. & Theodossiades, Stephanos, 2024. "A pendulum-based rotational energy harvester for self-powered monitoring of rotating systems in the era of industrial digitization," Applied Energy, Elsevier, vol. 365(C).
    9. Zhenguo Gao & Cuiqin Fang & Yuanyuan Gao & Xin Yin & Siyuan Zhang & Jian Lu & Guanglei Wu & Hongjing Wu & Bingang Xu, 2025. "Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Cong, Moyue & Gao, Yongzhuo & Wang, Weidong & He, Long & Mao, Xiwang & Long, Yi & Dong, Wei, 2024. "Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects," Applied Energy, Elsevier, vol. 356(C).
    11. Zhongjie Li & Limeng Zhou & Ying Gong & Fan Shen & Yan Peng & Hao Wu, 2025. "Axial Flux Electromagnetic Energy Harvester Driven by a Stirling Engine for Waste Heat Recovery," Energies, MDPI, vol. 18(7), pages 1-16, March.
    12. Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
    13. Zhang, Li & Kan, Junwu & Lin, Shijie & Liao, Weilin & Yang, Jianwen & Liu, Panpan & Wang, Shuyun & Zhang, Zhonghua, 2024. "Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate," Renewable Energy, Elsevier, vol. 222(C).
    14. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    15. Vahidhosseini, Seyed Mohammad & Rashidi, Saman & Ehsani, Mohammad Hossein, 2025. "Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    16. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    17. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
    18. Heng Liu & Dongxin Guo & Hengda Zhu & Honggui Wen & Jiawei Li & Lingyu Wan, 2025. "Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting," Energies, MDPI, vol. 18(6), pages 1-18, March.
    19. Qu, Shuai & Ren, Yuhao & Hu, Guobiao & Ding, Wei & Dong, Liwei & Yang, Jizhong & Wu, Zaixin & Zhu, Shengyang & Yang, Yaowen & Zhai, Wanming, 2024. "Event-driven piezoelectric energy harvesting for railway field applications," Applied Energy, Elsevier, vol. 364(C).
    20. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500491x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.