IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1620-d1619195.html
   My bibliography  Save this article

Axial Flux Electromagnetic Energy Harvester Driven by a Stirling Engine for Waste Heat Recovery

Author

Listed:
  • Zhongjie Li

    (Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai 200444, China
    School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Limeng Zhou

    (Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai 200444, China)

  • Ying Gong

    (Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai 200444, China)

  • Fan Shen

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Yan Peng

    (Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai 200444, China
    Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China)

  • Hao Wu

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

Abstract

In this paper, an axial flux electromagnetic energy harvester driven by a Stirling engine (AFEEH-SE) is presented for recovering waste heat above 200 °C. A gamma-type Stirling engine with a slider-crank drive mechanism serves as the power unit to convert thermal energy into rotational mechanical energy. The harvester comprises a rotating magnet array and a stationary coil array. Finite element simulations were conducted to analyze and compare the voltage output under different magnet and coil parameter configurations. Subsequently, a prototype utilizing mineral oil combustion as the heat source was designed, achieving a rotational speed of 950 rpm under open-circuit conditions. Through systematic adjustments to the magnet and coil parameters, the optimal performance configuration was determined to maximize the output power of the harvester. Under this optimized configuration, the AFEEH-SE achieved an effective power output of 57.13 mW, capable of charging a 2.2 mF capacitor to 28 V in 49 s. This study demonstrates the feasibility of the AFEEH-SE in practical applications and provides a solid foundation for the future field of waste heat recovery.

Suggested Citation

  • Zhongjie Li & Limeng Zhou & Ying Gong & Fan Shen & Yan Peng & Hao Wu, 2025. "Axial Flux Electromagnetic Energy Harvester Driven by a Stirling Engine for Waste Heat Recovery," Energies, MDPI, vol. 18(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1620-:d:1619195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeeshan, & Panigrahi, Basanta Kumar & Ahmed, Rahate & Mehmood, Muhammad Uzair & Park, Jin Chul & Kim, Yeongmin & Chun, Wongee, 2021. "Operation of a low-temperature differential heat engine for power generation via hybrid nanogenerators," Applied Energy, Elsevier, vol. 285(C).
    2. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    3. Abdolreza Pasharavesh & Reza Moheimani & Hamid Dalir, 2020. "Performance Analysis of an Electromagnetically Coupled Piezoelectric Energy Scavenger," Energies, MDPI, vol. 13(4), pages 1-19, February.
    4. Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
    5. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    6. Yeongmin Kim & Muhammad Uzair Mehmood & Hyun Joo Han & Yu Jin Kim & Seung Jin Oh & Sang-Hoon Lim, 2022. "Reclaiming Power Potential from Low Temperature Waste Heat by Thermomagnetic Heat Engines," Energies, MDPI, vol. 15(8), pages 1-12, April.
    7. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    8. Igor Nazareno Soares & Ruy Alberto Corrêa Altafim & Ruy Alberto Pisani Altafim & Melkzedekue de Moraes Alcântara Calabrese Moreira & Felipe Schiavon Inocêncio de Sousa & José A. Afonso & João Paulo Ca, 2024. "Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting," Energies, MDPI, vol. 17(21), pages 1-11, October.
    9. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    3. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    4. Zare, Shahryar & Pourfayaz, Fathollah & Tavakolpour-Saleh, A.R. & Lashaki, Reza Ahmadi, 2024. "A design method based on neural network to predict thermoacoustic Stirling engine parameters: Experimental and theoretical assessment," Energy, Elsevier, vol. 309(C).
    5. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    6. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    7. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    8. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    9. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    10. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    11. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    12. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    13. Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
    14. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    15. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    16. Lazaros Aresti & Gregoris Panayiotou, 2025. "Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article," Energies, MDPI, vol. 18(8), pages 1-7, April.
    17. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    18. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    19. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1620-:d:1619195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.