IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p223-d474453.html
   My bibliography  Save this article

Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model

Author

Listed:
  • Andrea Aquino

    (Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Pietro Poesio

    (Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

Abstract

The design of a convective drying cycle could be challenging because its thermodynamic performance depends on a wide range of operating parameters. Further, the initial product properties and environmental conditions fluctuate during the production, affecting the final product quality, environmental impact, and energy usage. An off-design analysis distinguishes the effects of different parameters defining the setup with the best and more stable performance. This study analyzes a reference scenario configured as an existing system and three system upgrades to recover the supplied energy and avoid heat and air dumping in the atmosphere. We calculate their performance for different seasons, initial product moisture, input/output rate, and two products. The analysis comprises 16 simulation cases, the solutions of a two-phase multispecies Euler–Euler model that simulates the thermodynamic equilibrium in all components. Results discuss the combination of parameters that maximizes the evaporation rate and produces the highest benefits on global performance up to doubling the reference levels. The advantages of heat recovery vary by the amount of wasted energy, increasing the exergy efficiency by a maximum of 17%. Energy needs for air recirculation cut the performance at least by 50%. Concluding remarks present the technical guidelines to reduce energy use and optimize production.

Suggested Citation

  • Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:223-:d:474453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    2. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    3. Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
    4. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    5. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    6. Sarker, Md. Sazzat Hossain & Ibrahim, Mohd Nordin & Abdul Aziz, Norashikin & Punan, Mohd Salleh, 2015. "Energy and exergy analysis of industrial fluidized bed drying of paddy," Energy, Elsevier, vol. 84(C), pages 131-138.
    7. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    8. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    9. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    10. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    11. Masli Irwan Rosli & Abdul Mu’im Abdul Nasir & Mohd Sobri Takriff & Lee Pei Chern, 2018. "Simulation of a Fluidized Bed Dryer for the Drying of Sago Waste," Energies, MDPI, vol. 11(9), pages 1-13, September.
    12. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    13. Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Giuseppe Urbano & Andrea Aquino & Flavio Scrucca, 2023. "Energy Performance, Environmental Impacts and Costs of a Drying System: Life Cycle Analysis of Conventional and Heat Recovery Scenarios," Energies, MDPI, vol. 16(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    2. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    3. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    4. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    5. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    6. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    7. Chantasiriwan, Somchart, 2021. "Optimum installation of flue gas dryer and additional air heater to increase the efficiency of coal-fired utility boiler," Energy, Elsevier, vol. 221(C).
    8. Cavalcanti, Eduardo J.C. & Carvalho, Monica & B. Azevedo, Jonathan L., 2019. "Exergoenvironmental results of a eucalyptus biomass-fired power plant," Energy, Elsevier, vol. 189(C).
    9. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    10. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    11. Wang, Hui & Torki, Mehdi & Taherian, Arian & Beigi, Mohsen & Xiao, Hong-Mei & Fang, Xiao-Ming, 2023. "Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
    13. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    14. Marcin Dębowski & Przemysław Bukowski & Przemysław Kobel & Jerzy Bieniek & Leszek Romański & Bernard Knutel, 2021. "Comparison of Energy Consumption of Cereal Grain Dryer Powered by LPG and Hard Coal in Polish Conditions," Energies, MDPI, vol. 14(14), pages 1-17, July.
    15. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    16. Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
    17. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    18. Incer-Valverde, Jimena & Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Improvement perspectives of cryogenics-based energy storage," Renewable Energy, Elsevier, vol. 169(C), pages 629-640.
    19. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    20. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:223-:d:474453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.