IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4588-d293355.html
   My bibliography  Save this article

Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer

Author

Listed:
  • Bin Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Changyou Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Tao Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Zhiheng Zeng

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Wenyan Ou

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Chengjie Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract

The present work proposes a novel industrial multi-field synergistic dryer with a drying capacity of 3.45 t/h. The energy, exergy, and quality aspects of the drying process were studied. An energy–exergy methodology was employed to estimate the energetic and exergetic performance, heat loss characteristics and heat recovery behavior of the dryer. Additionally, the quality of the dried paddy seeds was evaluated by its crackle ratio, generation potential, and generation rate. The results showed that the overall energy and exergy efficiency ranged from 13.26% to 56.63% and 39.03% to 60.23%, respectively. The improvement potential rates of the whole system varied from the lowest 8.49 kW to the highest 15.83 kW and respectively accounted for 15.81–29.48% of the total exergy input, indicating that the performance of the dryer is acceptable. The total recovered radiant energy and radiant exergy recover rate were respectively ascertained to be 237.64 MJ and 0.26 kW. As for the quality aspect, the generation potential and generation rate of the dried paddy seeds respectively ranged from 75% to 90% and 69% to 88% while the crackle ratio of the paddy seeds was 1%, which indicated that the quality performance of the dried seed is of economic viability.

Suggested Citation

  • Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4588-:d:293355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarker, Md. Sazzat Hossain & Ibrahim, Mohd Nordin & Abdul Aziz, Norashikin & Punan, Mohd Salleh, 2015. "Energy and exergy analysis of industrial fluidized bed drying of paddy," Energy, Elsevier, vol. 84(C), pages 131-138.
    2. Chen, N.N. & Chen, M.Q. & Fu, B.A. & Song, J.J., 2017. "Far-infrared irradiation drying behavior of typical biomass briquettes," Energy, Elsevier, vol. 121(C), pages 726-738.
    3. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    4. Hazervazifeh, Amin & Nikbakht, Ali M. & Moghaddam, Parviz A., 2016. "Novel hybridized drying methods for processing of apple fruit: Energy conservation approach," Energy, Elsevier, vol. 103(C), pages 679-687.
    5. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    6. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    7. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    8. Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    2. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    3. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    4. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Wang, Hui & Torki, Mehdi & Taherian, Arian & Beigi, Mohsen & Xiao, Hong-Mei & Fang, Xiao-Ming, 2023. "Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    7. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    8. Zahra Parhizi & Hamed Karami & Iman Golpour & Mohammad Kaveh & Mariusz Szymanek & Ana M. Blanco-Marigorta & José Daniel Marcos & Esmail Khalife & Stanisław Skowron & Nashwan Adnan Othman & Yousef Darv, 2022. "Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    9. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    10. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    11. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    12. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
    13. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
    14. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    15. Marcin Dębowski & Przemysław Bukowski & Przemysław Kobel & Jerzy Bieniek & Leszek Romański & Bernard Knutel, 2021. "Comparison of Energy Consumption of Cereal Grain Dryer Powered by LPG and Hard Coal in Polish Conditions," Energies, MDPI, vol. 14(14), pages 1-17, July.
    16. Abiodun A. Okunola & Timothy A. Adekanye & Clinton E. Okonkwo & Mohammad Kaveh & Mariusz Szymanek & Endurance O. Idahosa & Adeniyi T. Olayanju & Krystyna Wojciechowska, 2023. "Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam ( Dioscorea alata ) in a Hot Air Dryer," Energies, MDPI, vol. 16(4), pages 1-21, February.
    17. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
    18. Ganapathy Ponnambalam Arul & Selvam Thulasi & Pitchaipillai Kumar & Veeranan Arunprasad & Saboor Shaik & Mohamed Abbas & Parvathy Rajendran & Sher Afghan Khan & C. Ahamed Saleel, 2022. "Investigation of Dual–Pass Inclined Oscillating Bed Solar Dryer for Drying of Non-Parboiled Paddy Grains," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    19. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    20. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4588-:d:293355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.