IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp828-841.html
   My bibliography  Save this article

Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization

Author

Listed:
  • El Hallaoui, Zhor
  • El Hamdani, Fayrouz
  • Vaudreuil, Sébastien
  • Bounahmidi, Tijani
  • Abderafi, Souad

Abstract

With the objective to reduce fossil fuels consumption and greenhouse gas emissions, the integration of solar thermal energy into energy-intensive processes represents the most effective solution. This paper investigates the best solar integration scenarios to an industrial dryer unit through an exergy analysis. The exergetic balance for each subsystem is conducted, and a sensitivity parametric analysis was carried out. The optimization using the Genetic Algorithm was then conducted to define the optimum solar operating conditions. The exergetic evaluation showed an important exergy destruction at the dryer and combustion chamber, accounting for 58% and 42% of the inlet exergy flow, respectively. The sensitivity analysis outcomes showed that the exergy efficiency is clearly increased by increasing both drying temperature, decreasing the inlet moisture content, with preheating the combustion air temperature. Considering these variables, the optimization problem enabled enhancing the exergy efficiency by 40% and 30% for the overall process and flash dryer, respectively, when increasing drying temperature to 850 °C, an inlet moisture content of 14.9% and a preheated air combustion of 150 °C. Finally, the solar field could be integrated to the industrial dryer to preheat the ambient air for the combustion chamber to the setpoint temperature of 150 °C.

Suggested Citation

  • El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:828-841
    DOI: 10.1016/j.renene.2022.04.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    2. Baniassadi, Amir & Momen, Mahyar & Amidpour, Majid, 2015. "A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries," Energy, Elsevier, vol. 90(P2), pages 1674-1681.
    3. Sarker, Md. Sazzat Hossain & Ibrahim, Mohd Nordin & Abdul Aziz, Norashikin & Punan, Mohd Salleh, 2015. "Energy and exergy analysis of industrial fluidized bed drying of paddy," Energy, Elsevier, vol. 84(C), pages 131-138.
    4. Can Coskun & Murad Bayraktar & Zuhal Oktay & Ibrahim Dincer, 2009. "Energy and exergy analyses of an industrial wood chips drying process," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(4), pages 224-229, July.
    5. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    6. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    7. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    8. Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
    9. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    10. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    11. Karasavvas, Evgenios & Panopoulos, Kyriakos D. & Papadopoulou, Simira & Voutetakis, Spyros, 2020. "Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage," Renewable Energy, Elsevier, vol. 154(C), pages 743-753.
    12. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    13. Ximei Li & Jianmin Gao & Yaning Zhang & Yu Zhang & Qian Du & Shaohua Wu & Yukun Qin, 2020. "Energy, Exergy and Economic Analyses of a Combined Heating and Power System with Turbine-Driving Fans and Pumps in Northeast China," Energies, MDPI, vol. 13(4), pages 1-22, February.
    14. Fellaou, S. & Bounahmidi, T., 2018. "Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis," Energy, Elsevier, vol. 154(C), pages 190-200.
    15. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    16. Yogendrasasidhar, D. & Pydi Setty, Y., 2018. "Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer," Energy, Elsevier, vol. 151(C), pages 799-811.
    17. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    2. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    3. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    4. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    6. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    7. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    8. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    9. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    10. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    12. Gilago, Mulatu C. & Chandramohan, V.P., 2022. "Performance evaluation of natural and forced convection indirect type solar dryers during drying ivy gourd: An experimental study," Renewable Energy, Elsevier, vol. 182(C), pages 934-945.
    13. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
    14. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    15. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    16. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    17. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    18. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    19. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    20. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:828-841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.