IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1674-1681.html
   My bibliography  Save this article

A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries

Author

Listed:
  • Baniassadi, Amir
  • Momen, Mahyar
  • Amidpour, Majid

Abstract

Today, process industries are responsible for a large portion of world's energy demand. Accordingly, in this section, replacing fossil fuels with renewables can have a great effect on total energy consumption and CO2 emission of the world. Using Heat Integration concepts, a general procedure for integration of solar heat into processes is generated. This procedure provides a tool for designers to find the best integration scenario and solar fraction targets. Also, it can help economic optimization of Solar Heat Integration by calculating the solar fraction targets for a certain amount of capital investment. Then, a new index for evaluation of existing designs is presented. Finally, the case of an organic distillation plant was investigated for Solar Heat Integration. Using the proposed procedure, the best place for solar heat exchangers on the process heat exchanger network and the solar fraction target was found. Annual simulations suggested that with current collector technologies, a payback period of 7–9 years is reachable. It was predicted that with further developments in collector technologies and more restrictions on CO2 emission, Solar Heat Integration for this case will eventually be profitable.

Suggested Citation

  • Baniassadi, Amir & Momen, Mahyar & Amidpour, Majid, 2015. "A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries," Energy, Elsevier, vol. 90(P2), pages 1674-1681.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1674-1681
    DOI: 10.1016/j.energy.2015.06.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    2. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    3. Atkins, Martin J. & Walmsley, Michael R.W. & Morrison, Andrew S., 2010. "Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes," Energy, Elsevier, vol. 35(5), pages 1867-1873.
    4. Fuller, R.J., 2011. "Solar industrial process heating in Australia – Past and current status," Renewable Energy, Elsevier, vol. 36(1), pages 216-221.
    5. Lauterbach, C. & Schmitt, B. & Jordan, U. & Vajen, K., 2012. "The potential of solar heat for industrial processes in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5121-5130.
    6. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    7. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Neale, James R., 2013. "Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops," Energy, Elsevier, vol. 55(C), pages 15-22.
    8. Beath, Andrew C., 2012. "Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power," Energy, Elsevier, vol. 43(1), pages 261-272.
    9. Nemet, Andreja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Kravanja, Zdravko, 2012. "Methodology for maximising the use of renewables with variable availability," Energy, Elsevier, vol. 44(1), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
    2. Jannesari, Hamid & Babaei, Banafsheh, 2018. "Optimization of solar assisted heating system for electro-winning process in the copper complex," Energy, Elsevier, vol. 158(C), pages 957-966.
    3. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    4. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    5. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    6. Juan R Lizárraga-Morazán & Guillermo Martínez-Rodríguez & Amanda L Fuentes-Silva & Martín Picón-Núñez, 2021. "Selection of solar collector network design for industrial applications subject to economic and operation criteria," Energy & Environment, , vol. 32(8), pages 1504-1523, December.
    7. El Hallaoui, Zhor & El Hamdani, Fayrouz & Vaudreuil, Sébastien & Bounahmidi, Tijani & Abderafi, Souad, 2022. "Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization," Renewable Energy, Elsevier, vol. 191(C), pages 828-841.
    8. Moslehi, Salim & Reddy, T. Agami & Katipamula, Srinivas, 2018. "Evaluation of data-driven models for predicting solar photovoltaics power output," Energy, Elsevier, vol. 142(C), pages 1057-1065.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    2. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    3. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    4. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    5. Walmsley, Timothy G. & Walmsley, Michael R.W. & Tarighaleslami, Amir H. & Atkins, Martin J. & Neale, James R., 2015. "Integration options for solar thermal with low temperature industrial heat recovery loops," Energy, Elsevier, vol. 90(P1), pages 113-121.
    6. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    7. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    8. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    9. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    10. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    11. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
    12. Pankaj Kumar & Krishna Kumar Sinha & Bojan Đurin & Mukesh Kumar Gupta & Nishant Saxena & Malay Kumar Banerjee & Nikola Kranjčić & Suraj Kumar Singh & Shruti Kanga, 2022. "Economics of Implementing Solar Thermal Heating Systems in the Textile Industry," Energies, MDPI, vol. 15(12), pages 1-21, June.
    13. Isidoro Lillo-Bravo & Elena Pérez-Aparicio & Natividad Sancho-Caparrini & Manuel Antonio Silva-Pérez, 2018. "Benefits of Medium Temperature Solar Concentration Technologies as Thermal Energy Source of Industrial Processes in Spain," Energies, MDPI, vol. 11(11), pages 1-30, October.
    14. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).
    17. Isidoro Lillo & Elena Pérez & Sara Moreno & Manuel Silva, 2017. "Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina," Energies, MDPI, vol. 10(3), pages 1-22, March.
    18. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    19. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    20. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1674-1681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.