IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp186-198.html
   My bibliography  Save this article

Design optimization and control approach for a solar-augmented industrial heating

Author

Listed:
  • Tilahun, Fitsum Bekele
  • Bhandari, Ramchandra
  • Mamo, Mengesha

Abstract

Process level integration of solar energy could give an economically feasible solution if the industrial process allows its practical integration. The solar-augmented industrial process behaves as a complex system influenced by uncertainty of solar radiation, variability of demand temperature and process time schedule as well as possibility of thermal stratification in the storage. Addressing these issues to reach the most economical solution has two dimensions to it. First, the solar thermal system needs to be optimally designed. This requires the development of a performance criterion that will deliver maximum solar energy to the industrial process, avoid large variations of energy in the storage, and meet investment constraints. Second, the identified optimal system should be dynamically controlled to enable uniform heat distribution and efficient auxiliary heat utilization. This paper presents a holistic design optimization and control approach for a solar-augmented industrial process to facilitate decision support. The proposed solution is designed and optimized for a dyeing industrial process case study that resulted in a 5.7 year payback period, 56.3% solar fraction, and 252.2 tons equivalent carbon emission reduction. Furthermore by implementing dynamic control, about 12.4% increase in solar gain that led to a 5.6% reduction in payback period is identified.

Suggested Citation

  • Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:186-198
    DOI: 10.1016/j.energy.2019.04.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kicsiny, Richárd, 2015. "Transfer functions of solar heating systems for dynamic analysis and control design," Renewable Energy, Elsevier, vol. 77(C), pages 64-78.
    2. Baniassadi, Amir & Momen, Mahyar & Amidpour, Majid, 2015. "A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries," Energy, Elsevier, vol. 90(P2), pages 1674-1681.
    3. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: Proportional flow rate control," Energy, Elsevier, vol. 138(C), pages 668-681.
    4. Ntsaluba, Sula & Zhu, Bing & Xia, Xiaohua, 2016. "Optimal flow control of a forced circulation solar water heating system with energy storage units and connecting pipes," Renewable Energy, Elsevier, vol. 89(C), pages 108-124.
    5. Ayala, Claudio O. & Roca, Lidia & Guzman, Jose Luis & Normey-Rico, Julio E. & Berenguel, Manolo & Yebra, Luis, 2011. "Local model predictive controller in a solar desalination plant collector field," Renewable Energy, Elsevier, vol. 36(11), pages 3001-3012.
    6. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    7. Jannesari, Hamid & Babaei, Banafsheh, 2018. "Optimization of solar assisted heating system for electro-winning process in the copper complex," Energy, Elsevier, vol. 158(C), pages 957-966.
    8. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    9. Fontalvo, Armando & Garcia, Jesus & Sanjuan, Marco & Padilla, Ricardo Vasquez, 2014. "Automatic control strategies for hybrid solar-fossil fuel power plants," Renewable Energy, Elsevier, vol. 62(C), pages 424-431.
    10. Wang, Jingfan & O'Donnell, John & Brandt, Adam R., 2017. "Potential solar energy use in the global petroleum sector," Energy, Elsevier, vol. 118(C), pages 884-892.
    11. Zhao, Yawen & Hong, Hui & Jin, Hongguang & Li, Peiwen, 2017. "Thermodynamic mechanism for hybridization of moderate-temperature solar heat with conventional fossil-fired power plant," Energy, Elsevier, vol. 133(C), pages 832-842.
    12. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    13. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    14. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    15. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    16. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: On-off flow rate control," Energy, Elsevier, vol. 119(C), pages 637-651.
    17. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    18. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    19. García, José Luis & Porras-Prieto, Carlos Javier & Benavente, Rosa María & Gómez-Villarino, María Teresa & Mazarrón, Fernando R., 2019. "Profitability of a solar water heating system with evacuated tube collector in the meat industry," Renewable Energy, Elsevier, vol. 131(C), pages 966-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Alessandro Franco, 2020. "Methods for the Sustainable Design of Solar Energy Systems for Industrial Process Heat," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    3. Simon Kamerling & Valéry Vuillerme & Sylvain Rodat, 2021. "Solar Field Output Temperature Optimization Using a MILP Algorithm and a 0D Model in the Case of a Hybrid Concentrated Solar Thermal Power Plant for SHIP Applications," Energies, MDPI, vol. 14(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araújo, António & Silva, Rui, 2020. "Energy modeling of solar water heating systems with on-off control and thermally stratified storage using a fast computation algorithm," Renewable Energy, Elsevier, vol. 150(C), pages 891-906.
    2. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    3. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    4. Kicsiny, Richárd, 2018. "Black-box model for solar storage tanks based on multiple linear regression," Renewable Energy, Elsevier, vol. 125(C), pages 857-865.
    5. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    6. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    7. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: Proportional flow rate control," Energy, Elsevier, vol. 138(C), pages 668-681.
    8. Juan R Lizárraga-Morazán & Guillermo Martínez-Rodríguez & Amanda L Fuentes-Silva & Martín Picón-Núñez, 2021. "Selection of solar collector network design for industrial applications subject to economic and operation criteria," Energy & Environment, , vol. 32(8), pages 1504-1523, December.
    9. Kicsiny, Richárd, 2015. "Transfer functions of solar heating systems for dynamic analysis and control design," Renewable Energy, Elsevier, vol. 77(C), pages 64-78.
    10. Taler, Dawid & Sobota, Tomasz & Jaremkiewicz, Magdalena & Taler, Jan, 2022. "Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications," Energy, Elsevier, vol. 239(PE).
    11. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Weeratunge, Hansani & Aditya, Gregorius Riyan & Dunstall, Simon & de Hoog, Julian & Narsilio, Guillermo & Halgamuge, Saman, 2021. "Feasibility and performance analysis of hybrid ground source heat pump systems in fourteen cities," Energy, Elsevier, vol. 234(C).
    13. Zatti, Matteo & Gabba, Marco & Freschini, Marco & Rossi, Michele & Gambarotta, Agostino & Morini, Mirko & Martelli, Emanuele, 2019. "k-MILP: A novel clustering approach to select typical and extreme days for multi-energy systems design optimization," Energy, Elsevier, vol. 181(C), pages 1051-1063.
    14. Dawid Taler & Jan Taler & Tomasz Sobota & Jarosław Tokarczyk, 2022. "Cooling Modelling of an Electrically Heated Ceramic Heat Accumulator," Energies, MDPI, vol. 15(16), pages 1-26, August.
    15. Van Thillo, L. & Verbeke, S. & Audenaert, A., 2022. "The potential of building automation and control systems to lower the energy demand in residential buildings: A review of their performance and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    17. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    18. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    19. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    20. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:186-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.