IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v138y2015icp150-159.html
   My bibliography  Save this article

Energy and complexity: New ways forward

Author

Listed:
  • Bale, Catherine S.E.
  • Varga, Liz
  • Foxon, Timothy J.

Abstract

The purpose of this paper is to review the application of complexity science methods in understanding energy systems and system change. The challenge of moving to sustainable energy systems which provide secure, affordable and low-carbon energy services requires the application of methods which recognise the complexity of energy systems in relation to social, technological, economic and environmental aspects. Energy systems consist of many actors, interacting through networks, leading to emergent properties and adaptive and learning processes. Insights on these type of phenomena have been investigated in other contexts by complex systems theory. However, these insights are only recently beginning to be applied to understanding energy systems and systems transitions.

Suggested Citation

  • Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
  • Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:150-159
    DOI: 10.1016/j.apenergy.2014.10.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914011076
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy J. Foxon & Jonathan Köhler & Jonathan Michie & Christine Oughton, 2013. "Towards a new complexity economics for sustainability," Cambridge Journal of Economics, Oxford University Press, vol. 37(1), pages 187-208.
    2. Usher, Will & Strachan, Neil, 2012. "Critical mid-term uncertainties in long-term decarbonisation pathways," Energy Policy, Elsevier, vol. 41(C), pages 433-444.
    3. Bale, Catherine S.E. & Foxon, Timothy J. & Hannon, Matthew J. & Gale, William F., 2012. "Strategic energy planning within local authorities in the UK: A study of the city of Leeds," Energy Policy, Elsevier, vol. 48(C), pages 242-251.
    4. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    5. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    6. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    7. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    8. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    9. Koen Frenken, 2006. "Technological innovation and complexity theory," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(2), pages 137-155.
    10. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    11. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    12. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    13. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    14. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    15. John Foster, 2005. "From simplistic to complex systems in economics," Cambridge Journal of Economics, Oxford University Press, vol. 29(6), pages 873-892, November.
    16. Noam Bergman & Alex Haxeltine & Lorraine Whitmarsh & Jonathan Köhler & Michel Schilperoord & Jan Rotmans, 2008. "Modelling Socio-Technical Transition Patterns and Pathways," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(3), pages 1-7.
    17. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    18. McKitrick, Ross R., 1998. "The econometric critique of computable general equilibrium modeling: the role of functional forms," Economic Modelling, Elsevier, vol. 15(4), pages 543-573, October.
    19. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    20. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    21. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    22. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    23. Bazilian, Morgan & Rice, Andrew & Rotich, Juliana & Howells, Mark & DeCarolis, Joseph & Macmillan, Stuart & Brooks, Cameron & Bauer, Florian & Liebreich, Michael, 2012. "Open source software and crowdsourcing for energy analysis," Energy Policy, Elsevier, vol. 49(C), pages 149-153.
    24. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    25. Paul Ekins & Gabrial Anandarajah & Neil Strachan, 2011. "Towards a low-carbon economy: scenarios and policies for the UK," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 865-882, March.
    26. Bale, Catherine S.E. & McCullen, Nicholas J. & Foxon, Timothy J. & Rucklidge, Alastair M. & Gale, William F., 2013. "Harnessing social networks for promoting adoption of energy technologies in the domestic sector," Energy Policy, Elsevier, vol. 63(C), pages 833-844.
    27. Neil Strachan & Tim Foxon & Junichi Fujino, 2008. "Policy implications from the Low-Carbon Society (LCS) modelling project," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 17-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:appene:v:195:y:2017:i:c:p:370-381 is not listed on IDEAS
    2. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP," Applied Energy, Elsevier, vol. 180(C), pages 338-352.
    3. repec:eee:enepol:v:113:y:2018:i:c:p:513-522 is not listed on IDEAS
    4. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    5. repec:eee:energy:v:128:y:2017:i:c:p:531-539 is not listed on IDEAS
    6. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    7. repec:eee:enepol:v:108:y:2017:i:c:p:78-80 is not listed on IDEAS
    8. Edomah, Norbert & Foulds, Chris & Jones, Aled, 2017. "Policy making and energy infrastructure change: A Nigerian case study of energy governance in the electricity sector," Energy Policy, Elsevier, vol. 102(C), pages 476-485.
    9. Norbert Edomah & Chris Foulds & Aled Jones, 2016. "The Role of Policy Makers and Institutions in the Energy Sector: The Case of Energy Infrastructure Governance in Nigeria," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-15, August.
    10. repec:eee:energy:v:151:y:2018:i:c:p:569-580 is not listed on IDEAS
    11. Wang, Ziyi & Wennersten, Ronald & Sun, Qie, 2017. "Outline of principles for building scenarios – Transition toward more sustainable energy systems," Applied Energy, Elsevier, vol. 185(P2), pages 1890-1898.
    12. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    13. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    14. Zakeri, Behnam & Virasjoki, Vilma & Syri, Sanna & Connolly, David & Mathiesen, Brian V. & Welsch, Manuel, 2016. "Impact of Germany's energy transition on the Nordic power market – A market-based multi-region energy system model," Energy, Elsevier, vol. 115(P3), pages 1640-1662.
    15. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:138:y:2015:i:c:p:150-159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.