IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v54y2008i5p998-1014.html
   My bibliography  Save this article

Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models

Author

Listed:
  • Hazhir Rahmandad

    (Department of Industrial and Systems Engineering, Virginia Tech, Falls Church, Virginia 22043)

  • John Sterman

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

When is it better to use agent-based (AB) models, and when should differential equation (DE) models be used? Whereas DE models assume homogeneity and perfect mixing within compartments, AB models can capture heterogeneity across individuals and in the network of interactions among them. AB models relax aggregation assumptions, but entail computational and cognitive costs that may limit sensitivity analysis and model scope. Because resources are limited, the costs and benefits of such disaggregation should guide the choice of models for policy analysis. Using contagious disease as an example, we contrast the dynamics of a stochastic AB model with those of the analogous deterministic compartment DE model. We examine the impact of individual heterogeneity and different network topologies, including fully connected, random, Watts-Strogatz small world, scale-free, and lattice networks. Obviously, deterministic models yield a single trajectory for each parameter set, while stochastic models yield a distribution of outcomes. More interestingly, the DE and mean AB dynamics differ for several metrics relevant to public health, including diffusion speed, peak load on health services infrastructure, and total disease burden. The response of the models to policies can also differ even when their base case behavior is similar. In some conditions, however, these differences in means are small compared to variability caused by stochastic events, parameter uncertainty, and model boundary. We discuss implications for the choice among model types, focusing on policy design. The results apply beyond epidemiology: from innovation adoption to financial panics, many important social phenomena involve analogous processes of diffusion and social contagion.

Suggested Citation

  • Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
  • Handle: RePEc:inm:ormnsc:v:54:y:2008:i:5:p:998-1014
    DOI: 10.1287/mnsc.1070.0787
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1070.0787
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1070.0787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deirdre N. McCloskey & Stephen T. Ziliak, 1996. "The Standard Error of Regressions," Journal of Economic Literature, American Economic Association, vol. 34(1), pages 97-114, March.
    2. Margaret Edwards & Sylvie Huet & François Goreaud & Guillaume Deffuant, 2003. "Comparing an Individual-Based Model of Behaviour Diffusion with Its Mean Field Aggregate Approximation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(4), pages 1-9.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Tesfatsion, Leigh S., 2002. "Economic Agents and Markets As Emergent Phenomena," Staff General Research Papers Archive 10033, Iowa State University, Department of Economics.
    5. Raymond Gani & Steve Leach, 2001. "Transmission potential of smallpox in contemporary populations," Nature, Nature, vol. 414(6865), pages 748-751, December.
    6. Levinthal, Daniel & March, James G., 1981. "A model of adaptive organizational search," Journal of Economic Behavior & Organization, Elsevier, vol. 2(4), pages 307-333, December.
    7. Robert Axtell & Robert Axelrod & Joshua M. Epstein & Michael D. Cohen, 1995. "Aligning Simulation Models: A Case Study and Results," Working Papers 95-07-065, Santa Fe Institute.
    8. Glen L. Urban & John R. Hauser & John H. Roberts, 1990. "Prelaunch Forecasting of New Automobiles," Management Science, INFORMS, vol. 36(4), pages 401-421, April.
    9. Manju K. Ahuja & Kathleen M. Carley, 1999. "Network Structure in Virtual Organizations," Organization Science, INFORMS, vol. 10(6), pages 741-757, December.
    10. Neil M. Ferguson & Matt J. Keeling & W. John Edmunds & Raymond Gani & Bryan T. Grenfell & Roy M. Anderson & Steve Leach, 2003. "Planning for smallpox outbreaks," Nature, Nature, vol. 425(6959), pages 681-685, October.
    11. Kathleen Carley, 1992. "Organizational Learning and Personnel Turnover," Organization Science, INFORMS, vol. 3(1), pages 20-46, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Péli & Bart Nooteboom, 1997. "Simulation of Learning in Supply Partnerships," Computational and Mathematical Organization Theory, Springer, vol. 3(1), pages 43-66, March.
    2. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    4. Gerald C. Kane & Maryam Alavi, 2007. "Information Technology and Organizational Learning: An Investigation of Exploration and Exploitation Processes," Organization Science, INFORMS, vol. 18(5), pages 796-812, October.
    5. Dunia López-Pintado & Duncan J. Watts, 2008. "Social Influence, Binary Decisions and Collective Dynamics," Rationality and Society, , vol. 20(4), pages 399-443, November.
    6. Subramanian Balachander & Yan Liu & Axel Stock, 2009. "An Empirical Analysis of Scarcity Strategies in the Automobile Industry," Management Science, INFORMS, vol. 55(10), pages 1623-1637, October.
    7. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
    8. Uri Wilensky & William Rand, 2007. "Making Models Match: Replicating an Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-2.
    9. Linda Argote & Henrich R. Greve, 2007. "A Behavioral Theory of the Firm ---40 Years and Counting: Introduction and Impact," Organization Science, INFORMS, vol. 18(3), pages 337-349, June.
    10. Lemmens, A. & Croux, C. & Stremersch, S., 2012. "Dynamics in international market segmentation of new product growth," Other publications TiSEM 306086bd-670f-48d2-97d1-3, Tilburg University, School of Economics and Management.
    11. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
    12. repec:dgr:rugsom:97b04 is not listed on IDEAS
    13. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    14. Chang, Myong-Hun & Harrington, Joseph Jr., 2006. "Agent-Based Models of Organizations," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 26, pages 1273-1337, Elsevier.
    15. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    16. Alessandro Lomi & Erik R. Larsen & John H. Freeman, 2005. "Things Change: Dynamic Resource Constraints and System-Dependent Selection in the Evolution of Organizational Populations," Management Science, INFORMS, vol. 51(6), pages 882-903, June.
    17. Jerker Denrell & James G. March, 2001. "Adaptation as Information Restriction: The Hot Stove Effect," Organization Science, INFORMS, vol. 12(5), pages 523-538, October.
    18. Friederike Wall, 2023. "Modeling managerial search behavior based on Simon’s concept of satisficing," Computational and Mathematical Organization Theory, Springer, vol. 29(2), pages 265-299, June.
    19. Xiaolei Gao & Jianjian Wei & Hao Lei & Pengcheng Xu & Benjamin J Cowling & Yuguo Li, 2016. "Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-20, September.
    20. Jerker. Denrell & Christina. Fang & Daniel A. Levinthal, 2004. "From T-Mazes to Labyrinths: Learning from Model-Based Feedback," Management Science, INFORMS, vol. 50(10), pages 1366-1378, October.
    21. Friederike Wall, 2021. "Modeling Managerial Search Behavior based on Simon's Concept of Satisficing," Papers 2104.14002, arXiv.org, revised May 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:54:y:2008:i:5:p:998-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.