IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i3p850-860.html
   My bibliography  Save this article

The iterative contribution and relevance of modelling to UK energy policy

Author

Listed:
  • Strachan, Neil
  • Pye, Steve
  • Kannan, Ramachandran

Abstract

This paper discusses the iterative provision of modelling insights on long-term decarbonisation scenarios for UK energy policy makers. A multi-year model construction process of the UK MARKAL-Macro-hybrid energy-economic model, and four subsequent major policy analyses illustrates the scope of this interaction. The initial set of modelling runs focused on the technical feasibility of long-term 60% carbon dioxide (CO2) reduction scenarios, the role of key technologies, and the underlying uncertainties. Furthermore subsequent modelling studies were aimed to generate insights on more stringent targets, and on issues and uncertainties that may make targets harder to achieve. Hence, this paper analyses the large number of long-term UK CO2 reduction scenarios through a clustering approach on target stringency and barriers to implementation. Robust findings and key uncertainties are highlighted, including the critical role of the power sector, trade-offs between resources, sectors, key energy technologies and behavioural responses, and the increasing level and spread of CO2 marginal prices and GDP impacts. The relevance and use of modelling insights to the UK energy policy process is shown in the continuation of the energy modelling-policy interface. This constitutes both ongoing model development, and nuanced scenario analysis designed to further explore key uncertainties in evolving policy issues.

Suggested Citation

  • Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:3:p:850-860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00564-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neil Strachan & Stephen Pye & Nicholas Hughes, 2008. "The role of international drivers on UK scenarios of a low-carbon society," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 125-139, December.
    2. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    3. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
    4. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    5. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    6. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    7. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
    8. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    9. Weyant, John P., 2004. "Introduction and overview," Energy Economics, Elsevier, vol. 26(4), pages 501-515, July.
    10. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    11. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    12. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0.
    13. Huntington, Hillard G & Weyant, John P & Sweeney, James L, 1982. "Modeling for insights, not numbers: the experiences of the energy modeling forum," Omega, Elsevier, vol. 10(5), pages 449-462.
    14. Das, Anjana & Rossetti di Valdalbero, Domenico & Virdis, Maria R., 2007. "ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies," Energy Policy, Elsevier, vol. 35(2), pages 763-771, February.
    15. Pilavachi, P.A. & Dalamaga, Th. & Rossetti di Valdalbero, D. & Guilmot, J.-F., 2008. "Ex-post evaluation of European energy models," Energy Policy, Elsevier, vol. 36(5), pages 1726-1735, May.
    16. Laitner, J. A. & DeCanio, S. J. & Koomey, J. G. & Sanstad, A. H., 2003. "Room for improvement: increasing the value of energy modeling for policy analysis," Utilities Policy, Elsevier, vol. 11(2), pages 87-94, June.
    17. Winebrake, James J. & Sakva, Denys, 2006. "An evaluation of errors in US energy forecasts: 1982-2003," Energy Policy, Elsevier, vol. 34(18), pages 3475-3483, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    2. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    3. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    4. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    5. Scheer, Dirk, 2017. "Communicating energy system modelling to the wider public: An analysis of German media coverage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1389-1398.
    6. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    7. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    8. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    9. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    10. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    11. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    12. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    13. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    14. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    15. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    16. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    18. Jablonski, Sophie & Strachan, Neil & Brand, Christian & Bauen, Ausilio, 2010. "The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios," Energy Policy, Elsevier, vol. 38(10), pages 5799-5816, October.
    19. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    20. Anandarajah, Gabrial & McDowall, Will, 2012. "What are the costs of Scotland's climate and renewable policies?," Energy Policy, Elsevier, vol. 50(C), pages 773-783.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:3:p:850-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.