IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp641-650.html
   My bibliography  Save this article

A review on analysis and development of solar flat plate collector

Author

Listed:
  • Pandey, Krishna Murari
  • Chaurasiya, Rajesh

Abstract

Solar flat plate collectors are devices used to trap solar thermal energy and use it for heating applications like water heating, room heating and other industrial applications. Flat plate collectors are popular for low and medium heating applications and there are undergoing constant development in terms of size reduction and enhanced efficiency. This paper presents an overview on the different techniques that are employed to enhance the efficiency of flat late collectors. Effect of using nanofluids as heat transfer fluid, effect of altering absorber plate design for better capture of radiation, methods of heat loss reduction, use of polymer, employing mini channels for fluid flow, using PCM (phase changing materials) to provide heat during night without tank and effect of use of enhancement devices like inserts and reflector have been discussed in this paper. A brief insight on various techniques used to analyse the effects and various designs has also been presented with the development methodology. Some analytical studies and CFD models have also been mentioned. This review paper also deals with the suggestions for the research work which can be carried out in the direction of heat transfer from solar flat plate collectors.

Suggested Citation

  • Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:641-650
    DOI: 10.1016/j.rser.2016.09.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630569X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    2. Kessentini, Hamdi & Castro, Jesus & Capdevila, Roser & Oliva, Assensi, 2014. "Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system," Applied Energy, Elsevier, vol. 133(C), pages 206-223.
    3. Deng, Jie & Xu, Yupeng & Yang, Xudong, 2015. "A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method," Renewable Energy, Elsevier, vol. 76(C), pages 679-686.
    4. Zamzamian, Amirhossein & KeyanpourRad, Mansoor & KianiNeyestani, Maryam & Jamal-Abad, Milad Tajik, 2014. "An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 71(C), pages 658-664.
    5. Missirlis, D. & Martinopoulos, G. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2014. "Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations," Renewable Energy, Elsevier, vol. 68(C), pages 715-723.
    6. Del Col, Davide & Padovan, Andrea & Bortolato, Matteo & Dai Prè, Marco & Zambolin, Enrico, 2013. "Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers," Energy, Elsevier, vol. 58(C), pages 258-269.
    7. Martinopoulos, G. & Missirlis, D. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2010. "CFD modeling of a polymer solar collector," Renewable Energy, Elsevier, vol. 35(7), pages 1499-1508.
    8. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    9. Selmi, Mohamed & Al-Khawaja, Mohammed J. & Marafia, Abdulhamid, 2008. "Validation of CFD simulation for flat plate solar energy collector," Renewable Energy, Elsevier, vol. 33(3), pages 383-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    2. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    3. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    4. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    5. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    6. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    8. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    9. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    10. Pugsley, Adrian & Zacharopoulos, Aggelos & Smyth, Mervyn & Mondol, Jayanta, 2019. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration," Renewable Energy, Elsevier, vol. 137(C), pages 2-9.
    11. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    12. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.
    13. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    14. Herrando, María & Fantoni, Guillermo & Cubero, Ana & Simón-Allué, Raquel & Guedea, Isabel & Fueyo, Norberto, 2023. "Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment," Renewable Energy, Elsevier, vol. 209(C), pages 122-132.
    15. Missirlis, D. & Martinopoulos, G. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2014. "Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations," Renewable Energy, Elsevier, vol. 68(C), pages 715-723.
    16. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    17. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    18. Fekete, István & Farkas, István, 2019. "Numerical and experimental study of building integrated solar tile collectors," Renewable Energy, Elsevier, vol. 137(C), pages 45-55.
    19. Jamal-Abad, Milad Tajik & Saedodin, Seyfolah & Aminy, Mohammad, 2016. "Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: A perturbation solution," Renewable Energy, Elsevier, vol. 91(C), pages 147-154.
    20. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions," Renewable Energy, Elsevier, vol. 138(C), pages 754-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:641-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.