IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp715-723.html
   My bibliography  Save this article

Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations

Author

Listed:
  • Missirlis, D.
  • Martinopoulos, G.
  • Tsilingiridis, G.
  • Yakinthos, K.
  • Kyriakis, N.

Abstract

In order to further promote the utilization of solar thermal systems, solar collectors need to become more efficient and cost effective. This can be accomplished by a variety of methods, either by using lower cost materials, or/and by increasing their thermal efficiency by novel design. The current work presents such an effort dealing with the investigation of the heat transfer behaviour of a novel polymer solar collector for different manifold configurations with computational fluid dynamics (CFD).

Suggested Citation

  • Missirlis, D. & Martinopoulos, G. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2014. "Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations," Renewable Energy, Elsevier, vol. 68(C), pages 715-723.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:715-723
    DOI: 10.1016/j.renene.2014.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinopoulos, G. & Tsilingiridis, G. & Kyriakis, N., 2013. "Identification of the environmental impact from the use of different materials in domestic solar hot water systems," Applied Energy, Elsevier, vol. 102(C), pages 545-555.
    2. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    3. Nahar, N.M. & Garg, H.P., 1980. "Free convection and shading due to gap spacing between an absorber plate and the cover glazing in solar energy flat-plate collectors," Applied Energy, Elsevier, vol. 7(1-3), pages 129-145, November.
    4. Martinopoulos, G. & Missirlis, D. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2010. "CFD modeling of a polymer solar collector," Renewable Energy, Elsevier, vol. 35(7), pages 1499-1508.
    5. Selmi, Mohamed & Al-Khawaja, Mohammed J. & Marafia, Abdulhamid, 2008. "Validation of CFD simulation for flat plate solar energy collector," Renewable Energy, Elsevier, vol. 33(3), pages 383-387.
    6. Henderson, D. & Junaidi, H. & Muneer, T. & Grassie, T. & Currie, J., 2007. "Experimental and CFD investigation of an ICSSWH at various inclinations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1087-1116, August.
    7. Gertzos, K.P. & Caouris, Y.G. & Panidis, Th., 2010. "Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)," Renewable Energy, Elsevier, vol. 35(8), pages 1741-1750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    2. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    3. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    4. Wiesław Zima & Artur Cebula & Piotr Cisek, 2020. "Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification," Energies, MDPI, vol. 13(16), pages 1-24, August.
    5. Elguezabal, P. & Lopez, A. & Blanco, J.M. & Chica, J.A., 2020. "CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade," Renewable Energy, Elsevier, vol. 146(C), pages 1766-1780.
    6. Shantia, Alireza & Streicher, Wolfgang & Bales, Chris, 2022. "Effect of tapered headers on pressure drop and flow distribution in a U-type polymeric solar absorber," Renewable Energy, Elsevier, vol. 192(C), pages 550-560.
    7. Pugsley, Adrian & Zacharopoulos, Aggelos & Smyth, Mervyn & Mondol, Jayanta, 2019. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration," Renewable Energy, Elsevier, vol. 137(C), pages 2-9.
    8. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    9. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    10. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    11. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrando, María & Fantoni, Guillermo & Cubero, Ana & Simón-Allué, Raquel & Guedea, Isabel & Fueyo, Norberto, 2023. "Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment," Renewable Energy, Elsevier, vol. 209(C), pages 122-132.
    2. Tagliafico, Luca A. & Scarpa, Federico & De Rosa, Mattia, 2014. "Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 526-537.
    3. Martinopoulos, G. & Missirlis, D. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2010. "CFD modeling of a polymer solar collector," Renewable Energy, Elsevier, vol. 35(7), pages 1499-1508.
    4. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    5. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    6. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    7. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    8. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    9. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    10. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    11. Sakhaei, Seyed Ali & Valipour, Mohammad Sadegh, 2019. "Performance enhancement analysis of The flat plate collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 186-204.
    12. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.
    13. Korres, Dimitrios & Tzivanidis, Christos, 2018. "A new mini-CPC with a U-type evacuated tube under thermal and optical investigation," Renewable Energy, Elsevier, vol. 128(PB), pages 529-540.
    14. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    15. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    16. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    17. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    18. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    19. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    20. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:715-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.