IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp550-560.html
   My bibliography  Save this article

Effect of tapered headers on pressure drop and flow distribution in a U-type polymeric solar absorber

Author

Listed:
  • Shantia, Alireza
  • Streicher, Wolfgang
  • Bales, Chris

Abstract

This study inspects the effect of tapered headers on pressure drop and flow distribution in a U-type polymeric absorber with novel tapered headers and lens-shaped absorber strings using a validated thermo-hydraulic model. The model results are compared with those obtained from the literature to attain credibility in the flow distribution trend for the U-configuration. A good agreement between the developed discrete model and comparison cases is found. Moreover, in order to examine the efficacy of tapered headers in more detail, different scenarios are treated in terms of header configuration by applying cylindrical geometry in one or both inlet/outlet headers. The outcomes exemplify that even a slight cone angle of 1.73° in headers can significantly reduce non-uniformity (φmax< 8%) with negligible influence on the total pressured drop. Yet, further reduction in maldistribution (φmax< 5%) can be achieved in U-type absorbers if the tapered outlet header is combined with a cylindrical inlet header in the range of AR≤ 3.34 and DR≤ 0.24. In this case, a compromise between additional pressure drop and flow distribution degree should be found. The present study offers a systematic approach for conducting thermo-hydraulic analysis in flat-plate solar collectors with complex absorber compositions and geometries.

Suggested Citation

  • Shantia, Alireza & Streicher, Wolfgang & Bales, Chris, 2022. "Effect of tapered headers on pressure drop and flow distribution in a U-type polymeric solar absorber," Renewable Energy, Elsevier, vol. 192(C), pages 550-560.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:550-560
    DOI: 10.1016/j.renene.2022.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahidinia, F. & Khorasanizadeh, H., 2021. "Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study," Energy, Elsevier, vol. 228(C).
    2. Missirlis, D. & Martinopoulos, G. & Tsilingiridis, G. & Yakinthos, K. & Kyriakis, N., 2014. "Investigation of the heat transfer behaviour of a polymer solar collector for different manifold configurations," Renewable Energy, Elsevier, vol. 68(C), pages 715-723.
    3. Orlando Montoya-Marquez & José Jasson Flores-Prieto, 2017. "The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector," Energies, MDPI, vol. 10(1), pages 1-11, January.
    4. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    2. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    3. Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
    4. Orlando Montoya-Márquez & José Jassón Flores-Prieto, 2018. "Heat Removal Factor in Flat Plate Solar Collectors: Indoor Test Method," Energies, MDPI, vol. 11(10), pages 1-12, October.
    5. Konrad Nering & Krzysztof Nering, 2021. "Validation of Modified Algebraic Model during Transitional Flow in HVAC Duct," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    7. Barbara Zardin & Giovanni Cillo & Carlo Alberto Rinaldini & Enrico Mattarelli & Massimo Borghi, 2017. "Pressure Losses in Hydraulic Manifolds," Energies, MDPI, vol. 10(3), pages 1-21, March.
    8. Pugsley, Adrian & Zacharopoulos, Aggelos & Smyth, Mervyn & Mondol, Jayanta, 2019. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration," Renewable Energy, Elsevier, vol. 137(C), pages 2-9.
    9. Wiesław Zima & Artur Cebula & Piotr Cisek, 2020. "Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification," Energies, MDPI, vol. 13(16), pages 1-24, August.
    10. More, Supriya S. & Sagade, Atul A. & Ravindranath, G. & More, Sagar & More, Santosh, 2023. "Innovative mini-channel design for a compound parabolic solar thermal collector serving intermediate temperature applications," Energy, Elsevier, vol. 283(C).
    11. Martin Beer & Radim Rybár & Michal Cehlár & Sergey Zhironkin & Peter Sivák, 2020. "Design and Numerical Study of the Novel Manifold Header for the Evacuated Tube Solar Collector," Energies, MDPI, vol. 13(10), pages 1-12, May.
    12. Guillermo Martínez-Rodríguez & Héctor H. Silviano-Mendoza & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar, 2024. "Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications," Energies, MDPI, vol. 17(5), pages 1-17, February.
    13. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    14. Panagiotis Karvounis & Dimitrios Koubogiannis & Elias Hontzopoulos & Antonios Hatziapostolou, 2019. "Numerical and Experimental Study of Flow Characteristics in Solar Collector Manifolds," Energies, MDPI, vol. 12(8), pages 1-17, April.
    15. Elguezabal, P. & Lopez, A. & Blanco, J.M. & Chica, J.A., 2020. "CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade," Renewable Energy, Elsevier, vol. 146(C), pages 1766-1780.
    16. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.
    17. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
    18. Maadi, Seyed Reza & Sabzali, Hossein & Arabkoohsar, Ahmad, 2024. "Performance characterization of nano-enhanced PV/T systems in various cross-sections, extended flow turbulators, fins, and corrugated patterns," Renewable Energy, Elsevier, vol. 229(C).
    19. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    20. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:550-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.