IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p71-d87250.html
   My bibliography  Save this article

The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector

Author

Listed:
  • Orlando Montoya-Marquez

    (National Center of Research and Develop of Technology-TecNM-SEP, Interior Internado Palmira s/n, Cuernavaca 62490, Morelos, Mexico)

  • José Jasson Flores-Prieto

    (National Center of Research and Develop of Technology-TecNM-SEP, Interior Internado Palmira s/n, Cuernavaca 62490, Morelos, Mexico)

Abstract

In this experimental work, the effects of the inclination angle β and the ( T i − T a )/ G on the efficiency and the U L -value were investigated on a medium-temperature flat plate solar collector. The experiments were based on steady-state energy balance, by heat flow calorimetry at indoor conditions and considering the standard American National Standard Institute/American Society of Heating Refrigerating and Air Conditioning Engineers (ANSI/ASHRAE) 93-2010. The solar radiation was emulated by the Joule effect using a proportional integral derivative (PID) control considering two conditions of the absorber temperature, Case 1: ( T o − T i ) > 0, and Case 2: ( T o − T i ) = 0. The inclination angles were 0°–90° and the ( T i − T a )/ G were 0.044–0.083 m 2 ·°C/W and 0.124–0.235 for Case 1 and Case 2, respectively. The variations of β and ( T i − T a )/ G cause efficiency changes up to 0.37–0.45 (21.6%) and 0.31–0.45 (45.0%), respectively, for Case 1. Also, the U L (β) reached changes up to 10.1–12.0 W/m 2 ·°C (19.2%) and 8.4–12.0 W/m 2 ·°C (41.7%), respectively, for Case 1. The most significant changes of U L (β)/ U L (90°) vs. β were 8.0% at the horizontal position for Case 1, while for Case 2, the maximum change was 1.8% only. Therefore, the changes of the inclination angle cause significant variations of the convective flow patterns within the collector, which leads to considerable variation of the collector efficiency and its U L value.

Suggested Citation

  • Orlando Montoya-Marquez & José Jasson Flores-Prieto, 2017. "The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector," Energies, MDPI, vol. 10(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:71-:d:87250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shantia, Alireza & Streicher, Wolfgang & Bales, Chris, 2022. "Effect of tapered headers on pressure drop and flow distribution in a U-type polymeric solar absorber," Renewable Energy, Elsevier, vol. 192(C), pages 550-560.
    2. Orlando Montoya-Márquez & José Jassón Flores-Prieto, 2018. "Heat Removal Factor in Flat Plate Solar Collectors: Indoor Test Method," Energies, MDPI, vol. 11(10), pages 1-12, October.
    3. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    4. Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    5. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    2. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    3. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    4. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    5. Farhadi, Rouhollah & Taki, Morteza, 2020. "The energy gain reduction due to shadow inside a flat-plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 730-740.
    6. Zhang, Yaxi & Zhu, Na & Zhao, Xudong & Luo, Zhenyu & Hu, Pingfang & Lei, Fei, 2023. "Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system," Energy, Elsevier, vol. 274(C).
    7. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    8. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    9. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    10. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    11. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    12. Martinopoulos, G. & Tsilingiridis, G. & Kyriakis, N., 2013. "Identification of the environmental impact from the use of different materials in domestic solar hot water systems," Applied Energy, Elsevier, vol. 102(C), pages 545-555.
    13. Li, Guiqiang & Diallo, Thierno M.O. & Akhlaghi, Yousef Golizadeh & Shittu, Samson & Zhao, Xudong & Ma, Xiaoli & Wang, Yinfeng, 2019. "Simulation and experiment on thermal performance of a micro-channel heat pipe under different evaporator temperatures and tilt angles," Energy, Elsevier, vol. 179(C), pages 549-557.
    14. Shrivastava, R.L. & Vinod Kumar, & Untawale, S.P., 2017. "Modeling and simulation of solar water heater: A TRNSYS perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 126-143.
    15. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    16. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    17. Khurana, Hitesh & Majumdar, Rudrodip & Saha, Sandip K., 2022. "Response Surface Methodology-based prediction model for working fluid temperature during stand-alone operation of vertical cylindrical thermal energy storage tank," Renewable Energy, Elsevier, vol. 188(C), pages 619-636.
    18. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    19. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    20. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:71-:d:87250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.