IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1911-d119662.html
   My bibliography  Save this article

Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid

Author

Listed:
  • Woobin Kang

    (Graduate School of Chosun University, Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 61452, Korea)

  • Yunchan Shin

    (Graduate School of Chosun University, Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 61452, Korea)

  • Honghyun Cho

    (Department of Mechanical Engineering, Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 61452, Korea)

Abstract

In this study, the efficiencies of flat-plate and U-tube solar collectors were investigated experimentally when an Al 2 O 3 nanofluid was used as a working fluid and compared to those of solar collectors using water. The energy savings and CO 2 and SO 2 generated were calculated and compared to those of solar collectors using water. In addition, based on the experimental results, an economic analysis of the use of solar collectors in various countries was performed. As the concentration of the Al 2 O 3 nanofluid increased, the performance of the solar collector improved. The highest efficiency for the solar collectors was shown at the concentration of 1.0 vol % with the nanoparticle size of 20 nm. The maximum efficiencies of the flat-plate and U-tube solar collectors using a 1.0 vol %-Al 2 O 3 nanofluid with 20-nm nanoparticles was 74.9% and 72.4%, respectively, when the heat loss parameter was zero. The efficiencies of the flat-plate and U-tube solar collectors using Al 2 O 3 nanofluid were 14.8% and 10.7% higher, respectively, than those using water. When 50 EA (each) flat-plate solar collectors were operated for one year using an Al 2 O 3 nanofluid, the coal use, generated CO 2 , and generated SO 2 were 189.99 kg, 556.69 kg, and 2.03 kg less than those of solar collectors using water, respectively. In addition, the largest electricity cost reduction was in Germany.

Suggested Citation

  • Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1911-:d:119662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamzamian, Amirhossein & KeyanpourRad, Mansoor & KianiNeyestani, Maryam & Jamal-Abad, Milad Tajik, 2014. "An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 71(C), pages 658-664.
    2. Kim, Hyeongmin & Kim, Jinhyun & Cho, Honghyun, 2017. "Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid," Energy, Elsevier, vol. 118(C), pages 1304-1312.
    3. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    4. Karami, M. & Akhavan-Bahabadi, M.A. & Delfani, S. & Raisee, M., 2015. "Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 793-801.
    5. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    6. Orlando Montoya-Marquez & José Jasson Flores-Prieto, 2017. "The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector," Energies, MDPI, vol. 10(1), pages 1-11, January.
    7. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joo Hee Lee & Seong Geon Hwang & Gwi Hyun Lee, 2019. "Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids," Energies, MDPI, vol. 12(16), pages 1-16, August.
    2. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
    4. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    5. Elwekeel, Fifi N.M. & Abdala, Antar M.M., 2023. "Numerical and experimental investigation of the performance of a new circular flat plate collector," Renewable Energy, Elsevier, vol. 209(C), pages 581-590.
    6. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    7. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    8. Nur Çobanoğlu & Ziya Haktan Karadeniz, 2020. "Effect of Nanofluid Thermophysical Properties on the Performance Prediction of Single-Phase Natural Circulation Loops," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    10. Tsogtbilegt Boldoo & Jeonggyun Ham & Honghyun Cho, 2019. "Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid," Energies, MDPI, vol. 12(19), pages 1-17, October.
    11. Ahmadlouydarab, Majid & Ebadolahzadeh, Mohammad & Muhammad Ali, Hafiz, 2020. "Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Sheikholeslami, M. & Farshad, Seyyed Ali, 2021. "Investigation of solar collector system with turbulator considering hybrid nanoparticles," Renewable Energy, Elsevier, vol. 171(C), pages 1128-1158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    3. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    4. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    5. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    6. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    7. Erdoğan Arıkan & Serkan Abbasoğlu & Mustafa Gazi, 2018. "Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    8. Kumar, Sanjay & Sharma, Vipin & Samantaray, Manas R. & Chander, Nikhil, 2020. "Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1958-1969.
    9. Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
    10. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    11. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    12. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    13. Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
    14. Coccia, Gianluca & Tomassetti, Sebastiano & Di Nicola, Giovanni, 2021. "Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    16. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    17. Purohit, Nilesh & Jakhar, Sanjeev & Gullo, Paride & Dasgupta, Mani Sankar, 2018. "Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion," Renewable Energy, Elsevier, vol. 120(C), pages 14-22.
    18. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    19. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1911-:d:119662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.