IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp15-22.html
   My bibliography  Save this article

Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops

Author

Listed:
  • Walmsley, Michael R.W.
  • Walmsley, Timothy G.
  • Atkins, Martin J.
  • Neale, James R.

Abstract

Inter-plant Heat Integration across a large site can be achieved using a HRL (Heat Recovery Loop). In this paper the interrelationship between HRL storage temperatures, heat recovery and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three programming optimisation approaches where heat exchangers are constrained to have the same NTU (Number of Heat Transfer Units), LMTD (Log-Mean Temperature Difference) or to find the absolute MTA (Minimum Total Area) for a given heat recovery level. Analysis is performed using time-averaged and transient mass flow rate data and temperature data. The actual temperature driving force of the HRL heat exchangers is compared to the apparent driving force as indicated by the Composite Curves. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5% of the minimum area approach. Allocation of individual heat exchanger areas can vary widely depending on the optimisation method, the characteristics of the transient stream data and the differences in the approach and exit stream temperatures. Results suggest that using the ΔTmin method for selecting storage temperatures in combination with sizing exchangers based on the time average CP values (for while the process is running) gives a near optimal solution without requiring lots of data input or computing resources.

Suggested Citation

  • Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Neale, James R., 2013. "Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops," Energy, Elsevier, vol. 55(C), pages 15-22.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:15-22
    DOI: 10.1016/j.energy.2013.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baniassadi, Amir & Momen, Mahyar & Amidpour, Majid, 2015. "A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries," Energy, Elsevier, vol. 90(P2), pages 1674-1681.
    2. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    3. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2018. "Utility Exchanger Network synthesis for Total Site Heat Integration," Energy, Elsevier, vol. 153(C), pages 1000-1015.
    4. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    5. Walmsley, Timothy G. & Walmsley, Michael R.W. & Tarighaleslami, Amir H. & Atkins, Martin J. & Neale, James R., 2015. "Integration options for solar thermal with low temperature industrial heat recovery loops," Energy, Elsevier, vol. 90(P1), pages 113-121.
    6. Guo, Xiaofeng & Fan, Yilin & Luo, Lingai, 2014. "Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction," Energy, Elsevier, vol. 69(C), pages 728-741.
    7. Jalilinasrabady, Saeid & Palsson, Halldor & Saevarsdottir, Gudrun & Itoi, Ryuichi & Valdimarsson, Pall, 2013. "Experimental and CFD simulation of heat efficiency improvement in geothermal spas," Energy, Elsevier, vol. 56(C), pages 124-134.
    8. Bettina Muster‐Slawitsch & Christoph Brunner & Jürgen Fluch, 2014. "Application of an advanced pinch methodology for the food and drink production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 561-574, November.
    9. Boldyryev, Stanislav & Varbanov, Petar Sabev, 2015. "Low potential heat utilization of bromine plant via integration on process and Total Site levels," Energy, Elsevier, vol. 90(P1), pages 47-55.
    10. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    11. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2019. "A pinch-based automated targeting technique for heating medium system," Energy, Elsevier, vol. 166(C), pages 193-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:15-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.