IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp679-687.html
   My bibliography  Save this article

Novel hybridized drying methods for processing of apple fruit: Energy conservation approach

Author

Listed:
  • Hazervazifeh, Amin
  • Nikbakht, Ali M.
  • Moghaddam, Parviz A.

Abstract

Strategic outlook of apple cultivation and its significant post-processing challenges have been the leading factors for energy and time saving research approaches in apple processing. In this research, apple slices were subjected to hot air flow, microwave radiation and combined microwave-hot air flow drying. Drying time, energy consumption and thermal efficiency at different microwave power levels (500 W, 1000 W, 1500 W and 2000 W), hot air temperatures (40 °C, 50 °C, 60 °C and 70 °C) and inlet air velocities (0.5 ms−1, 1 ms−1, 1.5 ms−1 and 2 ms−1) were studied and compared. The minimum time of processing was 17 min when integrated hot air flow and microwave radiation was applied with 2000 W power at the temperature of 70 °C and air velocity of 2 ms−1. Furthermore, the minimum value of total energy consumption during entire process of apple slices drying was 2684 kJ which belonged to microwave drying with 2000 W power.

Suggested Citation

  • Hazervazifeh, Amin & Nikbakht, Ali M. & Moghaddam, Parviz A., 2016. "Novel hybridized drying methods for processing of apple fruit: Energy conservation approach," Energy, Elsevier, vol. 103(C), pages 679-687.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:679-687
    DOI: 10.1016/j.energy.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    2. Li, K. & Zhang, Y. & Wang, Y.F. & El-Kolaly, W. & Gao, M. & Sun, W. & Li, M., 2021. "Effects of drying variables on the characteristic of the hot air drying for gastrodia elata: Experiments and multi-variable model," Energy, Elsevier, vol. 222(C).
    3. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:679-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.