IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp19-27.html
   My bibliography  Save this article

A novel concept of linear oscillatory synchronous generator designed for a stirling engine

Author

Listed:
  • Hadžiselimović, Miralem
  • Srpčič, Gregor
  • Brinovar, Iztok
  • Praunseis, Zdravko
  • Seme, Sebastijan
  • Štumberger, Bojan

Abstract

This paper presents a novel construction of a linear oscillatory synchronous generator designed to be used in a free-piston Stirling engine. High oscillation frequency and short displacement of linear movement present a challenge for the design of the linear oscillatory generator. This work proposes a novel construction of a modular linear synchronous generator. The novel modular linear synchronous generator consists of a basic stationary primary part with concentrated three-phase winding and a basic moving secondary part with permanent magnets. Modular topology of the proposed linear oscillatory synchronous generator enables assembly of different machine lengths according to the required power level by stacking together various numbers of basic primary and secondary modules. Two prototypes of linear oscillatory synchronous generator with different secondary part were developed and tested. This paper presents the electromagnetic design and the results of experimental testing in a laboratory environment.

Suggested Citation

  • Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:19-27
    DOI: 10.1016/j.energy.2019.04.187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beltrán-Chacon, Ricardo & Leal-Chavez, Daniel & Sauceda, D. & Pellegrini-Cervantes, Manuel & Borunda, Mónica, 2015. "Design and analysis of a dead volume control for a solar Stirling engine with induction generator," Energy, Elsevier, vol. 93(P2), pages 2593-2603.
    2. Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S. & Rodríguez, José M. & Muñoz, Antonio, 2017. "Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation," Applied Energy, Elsevier, vol. 194(C), pages 108-122.
    3. Toro, Claudia & Lior, Noam, 2017. "Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation," Energy, Elsevier, vol. 120(C), pages 549-564.
    4. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.
    5. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    6. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
    7. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    8. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    9. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    10. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    11. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    12. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    2. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    3. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    4. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    5. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    6. Wang, Jia & Xu, Weiqing & Ding, Shuiting & Shi, Yan & Cai, Maolin & Rehman, Ali, 2015. "Liquid air fueled open-closed cycle Stirling engine and its exergy analysis," Energy, Elsevier, vol. 90(P1), pages 187-201.
    7. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
    8. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    9. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    10. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    11. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    12. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    13. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    14. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    15. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    16. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    17. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    18. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    19. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    20. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:19-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.