IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920305572.html
   My bibliography  Save this article

Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment

Author

Listed:
  • Masoumi, A.P.
  • Tavakolpour-Saleh, A.R.
  • Rahideh, A.

Abstract

In this paper, a genetic-fuzzy control scheme is applied to an active free piston Stirling engine (AFPSE) to achieve a hybrid intelligent converter that is robust to parameter changes. Indeed, the open-loop AFPSE possesses an optimum performance at a distinct operating frequency. However, the optimal frequency of the open-loop engine system is affected by several parameters such as sink and source temperatures, power piston mass, and stiffness of the power piston’s spring. Consequently, there remain some rooms for an intelligent control unit in the open-loop AFPSE such that a maximum power is acquired under different uncertainties and parameter changes. First, a brief description of the mathematical equations governing the open-loop AFPSE is given. Then, an intelligent fuzzy control unit is proposed to control the engine and a genetic algorithm (GA) is used to achieve an optimal fuzzy controller. Accordingly, the output power of the engine is considered as the cost function of GA in the control design problem. Finally, the simulation and practical results reveal the feasibility of design and the benefits of the proposed novel intelligent AFPSE (IAFPSE). Moreover, based on the obtained practical outcomes, it is found that the IAFPSE is robust against the changes of power piston mass ranging from 0.6 kg to 1 kg over which the operating frequency is intelligently tuned from 5.4 Hz to 4.3 Hz respectively.

Suggested Citation

  • Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305572
    DOI: 10.1016/j.apenergy.2020.115045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920305572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    2. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    3. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    4. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    5. Dettori, S. & Iannino, V. & Colla, V. & Signorini, A., 2018. "An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications," Applied Energy, Elsevier, vol. 227(C), pages 655-664.
    6. Khishtandar, Soheila, 2019. "Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design," Applied Energy, Elsevier, vol. 236(C), pages 183-195.
    7. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    8. Gentils, Theo & Wang, Lin & Kolios, Athanasios, 2017. "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm," Applied Energy, Elsevier, vol. 199(C), pages 187-204.
    9. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    10. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    11. Azadegan, Arash & Porobic, Lejla & Ghazinoory, Sepehr & Samouei, Parvaneh & Saman Kheirkhah, Amir, 2011. "Fuzzy logic in manufacturing: A review of literature and a specialized application," International Journal of Production Economics, Elsevier, vol. 132(2), pages 258-270, August.
    12. de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
    13. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    14. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    15. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    2. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    3. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).
    4. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    2. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    3. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    4. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    5. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    6. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    7. Jose Egas & Don M. Clucas, 2018. "Stirling Engine Configuration Selection," Energies, MDPI, vol. 11(3), pages 1-22, March.
    8. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    9. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    10. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    11. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    12. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    13. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    14. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    15. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    16. Remiorz, Leszek & Kotowicz, Janusz & Uchman, Wojciech, 2018. "Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump," Energy, Elsevier, vol. 148(C), pages 134-147.
    17. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    18. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    19. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    20. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.