IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp304-321.html
   My bibliography  Save this article

CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller

Author

Listed:
  • Zhu, Hongjun
  • Zhao, Ying
  • Zhou, Tongming

Abstract

A new converter consisting of an elastically mounted circular cylinder and a free-to-rate pentagram impeller is proposed to harness hydrokinetic energy from water currents. The vibration energy of the cylinder and the rotation energy of the impeller are harvested simultaneously. The two-way fluid-structure interaction simulations are employed to investigate the vibration and rotation response of the converter. The simulated Reynolds number range is 14,000 < Re < 80,000, falling in the TrSL2 (transition of shear layer 2) and TrSL3 regimes. The results indicate that the vibration amplitude of the converter increases with increasing of the flow velocity, and the growth becomes faster at high reduced velocity (Ur). The presence and rotation of the impeller contribute to the hydrodynamic instability of the system at Ur ≥ 9, where the rotational direction is constantly changing. The hydrodynamic instability brings about a wider flow wake and unstable vortex shedding, resulting in the enhancement of vibration and the increase of power. For such a rotation symmetric structure, increasing the torsional friction does not play a significant role in suppressing the hydrodynamic instability. The estimated power generating capacity is sensitive to flow velocity and additional damping ratio. The average power efficiency is about 22.6%, and the power density for a 5D × 5D staggered configuration with ζharn of 0.031374 can reach 885.53 W/m3.

Suggested Citation

  • Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:304-321
    DOI: 10.1016/j.apenergy.2017.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Hai & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2016. "Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions," Renewable Energy, Elsevier, vol. 99(C), pages 936-959.
    2. Sun, Hai & Ma, Chunhui & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2017. "Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness," Renewable Energy, Elsevier, vol. 107(C), pages 61-80.
    3. Ding, Lin & Zhang, Li & Bernitsas, Michael M. & Chang, Che-Chun, 2016. "Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control," Renewable Energy, Elsevier, vol. 85(C), pages 1246-1259.
    4. Zhu, Hongjun & Gao, Yue, 2017. "Vortex induced vibration response and energy harvesting of a marine riser attached by a free-to-rotate impeller," Energy, Elsevier, vol. 134(C), pages 532-544.
    5. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    6. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    7. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    8. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    9. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    10. Pacheco, A. & Ferreira, Ó., 2016. "Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario," Applied Energy, Elsevier, vol. 180(C), pages 369-385.
    11. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    12. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    13. Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
    14. Kim, Eun Soo & Bernitsas, Michael M., 2016. "Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion," Applied Energy, Elsevier, vol. 170(C), pages 92-100.
    15. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    16. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    17. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    2. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    3. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    4. Jijian Lian & Zhichuan Wu & Shuai Yao & Xiang Yan & Xiaoqun Wang & Zhaolin Jia & Yan Long & Nan Shao & Defeng Yang & Xinyi Li, 2022. "Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem," Energies, MDPI, vol. 15(21), pages 1-20, November.
    5. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    6. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    7. Christina Hamdan & John Allport & Azadeh Sajedin, 2021. "Piezoelectric Power Generation from the Vortex-Induced Vibrations of a Semi-Cylinder Exposed to Water Flow," Energies, MDPI, vol. 14(21), pages 1-25, October.
    8. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    9. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    10. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    11. Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
    12. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Liuyi Jiang & Hong Zhang & Qingquan Duan & Xiaoben Liu, 2021. "Numerical Simulation of Acoustic Resonance Enhancement for Mean Flow Wind Energy Harvester as Well as Suppression for Pipeline," Energies, MDPI, vol. 14(6), pages 1-17, March.
    14. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
    15. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    16. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    17. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    2. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Kim, Eun Soo & Sun, Hai & Park, Hongrae & Shin, Sung-chul & Chae, Eun Jung & Ouderkirk, Ryan & Bernitsas, Michael M., 2021. "Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    5. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    6. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    7. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    8. Zhang, Baoshou & Mao, Zhaoyong & Song, Baowei & Ding, Wenjun & Tian, Wenlong, 2018. "Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM," Energy, Elsevier, vol. 144(C), pages 218-231.
    9. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    10. Sun, Hai & Bernitsas, Marinos M. & Turkol, Mert, 2020. "Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations," Renewable Energy, Elsevier, vol. 149(C), pages 828-860.
    11. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    12. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    13. Gu, Mengfan & Song, Baowei & Zhang, Baoshou & Mao, Zhaoyong & Tian, Wenlong, 2020. "The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder," Renewable Energy, Elsevier, vol. 151(C), pages 931-945.
    14. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    15. Zhang, Baoshou & Wang, Keh-Han & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2018. "Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion," Energy, Elsevier, vol. 165(PA), pages 949-964.
    16. Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
    17. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Li, Boyang & Gu, Mengfan, 2019. "Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle," Energy, Elsevier, vol. 189(C).
    18. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    19. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    20. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:304-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.