IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp828-860.html
   My bibliography  Save this article

Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations

Author

Listed:
  • Sun, Hai
  • Bernitsas, Marinos M.
  • Turkol, Mert

Abstract

Alternating lift technology (ALT) harnesses hydrokinetic energy from currents and tides and is different from conventional steady lift technologies (turbines). ALT is still under development with an important research issue being the mitigation of wake effect on downstream cylinders in Flow Induced Oscillations (FIO) of multi-cylinder Current Energy Converters (CEC). Rather than adjust the configuration/parameters of the converter, a more direct and effective way is to actively adjust the harnessed power. In this paper, a hydrokinetic energy converter using FIO of two cylinders in tandem in one-degree-of-freedom oscillators, with nonlinear adaptive damping and linear spring stiffness, is tested experimentally. FIO include Vortex Induced Vibrations (VIV), galloping, and their coexistence. Introducing adaptive damping into the tandem cylinders overcomes the shielding effect, which previous research on two tandem cylinders has shown to reduce power output by the downstream cylinder. Shielding along with fixed damping result either in ceasing motion due to excessive damping, or in low harnessed energy due to insufficient damping. In this experimental study, damping-to-velocity rate, linear spring-stiffness, cylinder spacing, and flow-velocity are the parameters with Reynolds number 30,000 ≤ Re ≤ 120,000. Comparison to linear-oscillators in FIO shows that this nonlinear converter, with velocity-proportional damping coefficient, is more effective over the entire FIO range but especially in galloping, where both flow and cylinder speeds are higher. Experimental results for energy harvesting, efficiency and instantaneous energy of the converter are presented and discussed supported by amplitude and frequency response data. The results show that the nonlinear, adaptive, velocity-proportional damping coefficient is an effective way to increase the overall harnessed power and the power of downstream cylinder. The harnessed power in the VIV to galloping transition increases by up to 94%. The most significant improvement is in the galloping region, where the increase in harnessed power and efficiency is around 33%.

Suggested Citation

  • Sun, Hai & Bernitsas, Marinos M. & Turkol, Mert, 2020. "Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations," Renewable Energy, Elsevier, vol. 149(C), pages 828-860.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:828-860
    DOI: 10.1016/j.renene.2019.12.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Hai & Ma, Chunhui & Bernitsas, Michael M., 2018. "Hydrokinetic power conversion using Flow Induced Vibrations with cubic restoring force," Energy, Elsevier, vol. 153(C), pages 490-508.
    2. Sun, Hai & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2016. "Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions," Renewable Energy, Elsevier, vol. 99(C), pages 936-959.
    3. Sun, Hai & Ma, Chunhui & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2017. "Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness," Renewable Energy, Elsevier, vol. 107(C), pages 61-80.
    4. Sun, Hai & Ma, Chunhui & Bernitsas, Michael M., 2018. "Hydrokinetic power conversion using Flow Induced Vibrations with nonlinear (adaptive piecewise-linear) springs," Energy, Elsevier, vol. 143(C), pages 1085-1106.
    5. Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
    6. Kim, Eun Soo & Bernitsas, Michael M., 2016. "Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion," Applied Energy, Elsevier, vol. 170(C), pages 92-100.
    7. Sun, Hai & Bernitsas, Michael M., 2019. "Bio-Inspired adaptive damping in hydrokinetic energy harnessing using flow-induced oscillations," Energy, Elsevier, vol. 176(C), pages 940-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Yanfang Lv & Liping Sun & Michael M. Bernitsas & Mengjie Jiang & Hai Sun, 2021. "Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    4. Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
    5. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    6. Zhang, Baoshou & Li, Boyang & Li, Canpeng & Yu, Haidong & Wang, Dezheng & Shi, Renhe, 2023. "Effects of variable damping on hydrokinetic energy conversion of a cylinder using wake-induced vibration," Renewable Energy, Elsevier, vol. 213(C), pages 176-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    3. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O. & Wu, J. & Shahvaghar-Asl, S., 2020. "Marine hydrokinetic energy harvesting performance of diamond and square oscillators in tandem arrangements," Energy, Elsevier, vol. 202(C).
    4. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    5. Zhang, Baoshou & Wang, Keh-Han & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2018. "Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion," Energy, Elsevier, vol. 165(PA), pages 949-964.
    6. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    7. Sun, Hai & Bernitsas, Michael M., 2019. "Bio-Inspired adaptive damping in hydrokinetic energy harnessing using flow-induced oscillations," Energy, Elsevier, vol. 176(C), pages 940-960.
    8. Zhang, Baoshou & Li, Boyang & Fu, Song & Mao, Zhaoyong & Ding, Wenjun, 2022. "Vortex-Induced Vibration (VIV) hydrokinetic energy harvesting based on nonlinear damping," Renewable Energy, Elsevier, vol. 195(C), pages 1050-1063.
    9. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    10. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    11. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    12. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    13. Kim, Eun Soo & Sun, Hai & Park, Hongrae & Shin, Sung-chul & Chae, Eun Jung & Ouderkirk, Ryan & Bernitsas, Michael M., 2021. "Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Li, Boyang & Gu, Mengfan, 2019. "Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle," Energy, Elsevier, vol. 189(C).
    15. Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
    16. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    17. Mengyu Li & Christopher Bernitsas & Guo Jing & Sun Hai, 2020. "Hydrokinetic Power Conversion Using Vortex-Induced Oscillation with Cubic Restoring Force," Energies, MDPI, vol. 13(12), pages 1-18, June.
    18. Gu, Mengfan & Song, Baowei & Zhang, Baoshou & Mao, Zhaoyong & Tian, Wenlong, 2020. "The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder," Renewable Energy, Elsevier, vol. 151(C), pages 931-945.
    19. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    20. Zhang, Baoshou & Mao, Zhaoyong & Song, Baowei & Ding, Wenjun & Tian, Wenlong, 2018. "Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM," Energy, Elsevier, vol. 144(C), pages 218-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:828-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.