IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6639-d912175.html
   My bibliography  Save this article

New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends

Author

Listed:
  • Roberto De Fazio

    (Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy)

  • Roberta Proto

    (Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy)

  • Carolina Del-Valle-Soto

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico)

  • Ramiro Velázquez

    (Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20290, Mexico)

  • Paolo Visconti

    (Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
    Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20290, Mexico)

Abstract

Wearable technology represents a new technological paradigm for promoting physical activity, enabling monitoring of performances and athletic gestures. In addition, they can be employed for remote health monitoring applications, allowing continuous acquisition of users’ vital signs directly at home, emergency alerting, and computer-assisted rehabilitation. Commonly, these devices depend on batteries which are not the better option since researchers aim for dispositive who need minimal human intervention. Energy harvesting devices can be useful to extract energy from the human body, especially by integrating them into the garments, giving health monitoring devices enough energy for their independent operation. This review work focuses on the main new wearable technologies and devices to scavenge energy from the human body. First, the most suitable energy sources exploitable for wearable applications are investigated. Afterward, an overview of the main harvesting technologies (piezoelectric, triboelectric, thermoelectric, solar fabrics, and hybrid solution) is presented. In detail, we focused on flexible and thin textiles with energy harvesting capability, allowing easy integration into clothes fabric. Furthermore, comparative analyses of each harvesting technology are proposed, providing useful insights related to the best technologies for developing future self-sustainable wearable devices. Finally, a comparison between our review work and similar ones is introduced, highlighting its strengths in completeness and specificity.

Suggested Citation

  • Roberto De Fazio & Roberta Proto & Carolina Del-Valle-Soto & Ramiro Velázquez & Paolo Visconti, 2022. "New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends," Energies, MDPI, vol. 15(18), pages 1-37, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6639-:d:912175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Paolo Visconti, 2020. "Limitations and Characterization of Energy Storage Devices for Harvesting Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    2. Sang M. Lee & DonHee Lee, 2020. "Healthcare wearable devices: an analysis of key factors for continuous use intention," Service Business, Springer;Pan-Pacific Business Association, vol. 14(4), pages 503-531, December.
    3. Ishtia Zahir Hossain & Ashaduzzaman Khan & Gaffar Hossain, 2022. "A Piezoelectric Smart Textile for Energy Harvesting and Wearable Self-Powered Sensors," Energies, MDPI, vol. 15(15), pages 1-11, July.
    4. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    5. Thitima Jintanawan & Gridsada Phanomchoeng & Surapong Suwankawin & Phatsakorn Kreepoke & Pimsalisa Chetchatree & Chanut U-viengchai, 2020. "Design of Kinetic-Energy Harvesting Floors," Energies, MDPI, vol. 13(20), pages 1-19, October.
    6. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Young-Man Choi & Moon Gu Lee & Yongho Jeon, 2017. "Wearable Biomechanical Energy Harvesting Technologies," Energies, MDPI, vol. 10(10), pages 1-17, September.
    8. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    9. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Alessandro Minerba & Paolo Visconti, 2020. "A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments," Energies, MDPI, vol. 13(9), pages 1-33, May.
    10. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thitima Jintanawan & Gridsada Phanomchoeng & Surapong Suwankawin & Weeraphat Thamwiphat & Varinthorn Khunkiat & Wasu Watanasiri, 2022. "Design of a More Efficient Rotating-EM Energy Floor with Lead-Screw and Clutch Mechanism," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    3. Paolo Visconti & Laura Bagordo & Ramiro Velázquez & Donato Cafagna & Roberto De Fazio, 2022. "Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: A Review," Energies, MDPI, vol. 15(2), pages 1-38, January.
    4. Carolina Del-Valle-Soto & Ramiro Velázquez & Leonardo J. Valdivia & Nicola Ivan Giannoccaro & Paolo Visconti, 2020. "An Energy Model Using Sleeping Algorithms for Wireless Sensor Networks under Proactive and Reactive Protocols: A Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-31, June.
    5. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    6. Wang, Xue & Wang, Hongchao & Su, Wenbing & Chen, Tingting & Tan, Chang & Madre, María A. & Sotelo, Andres & Wang, Chunlei, 2022. "U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan," Energy, Elsevier, vol. 238(PB).
    7. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    8. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    9. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    10. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    11. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    12. Tao Wang & Yunce Zhang, 2018. "Design, Analysis, and Evaluation of a Compact Electromagnetic Energy Harvester from Water Flow for Remote Sensors," Energies, MDPI, vol. 11(6), pages 1-14, June.
    13. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    14. Hayat, Naeem & Salameh, Anas A. & Malik, Haider Ali & Yaacob, Mohd Rafi, 2022. "Exploring the adoption of wearable healthcare devices among the Pakistani adults with dual analysis techniques," Technology in Society, Elsevier, vol. 70(C).
    15. Yuhyung Shin & Won-Moo Hur & Hansol Hwang, 2022. "Impacts of customer incivility and abusive supervision on employee performance: a comparative study of the pre- and post-COVID-19 periods," Service Business, Springer;Pan-Pacific Business Association, vol. 16(2), pages 309-330, June.
    16. Paolo Visconti & Francesco Iaia & Roberto De Fazio & Nicola Ivan Giannoccaro, 2021. "A Stake-Out Prototype System Based on GNSS-RTK Technology for Implementing Accurate Vehicle Reliability and Performance Tests," Energies, MDPI, vol. 14(16), pages 1-22, August.
    17. Irene Cappelli & Stefano Parrino & Alessandro Pozzebon & Alessio Salta, 2021. "Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermoelectric Generators (TEGs)-Based Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-17, November.
    18. Yu, Yuedong & Zhu, Wei & Wang, Yaling & Zhu, Pengcheng & Peng, Kang & Deng, Yuan, 2020. "Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique," Applied Energy, Elsevier, vol. 275(C).
    19. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    20. Pang, Dandan & Zhang, Aibing & Guo, Yage & Wu, Junfeng, 2023. "Energy harvesting analysis of wearable thermoelectric generators integrated with human skin," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6639-:d:912175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.