Author
Listed:
- Qirui Ding
(Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
Zhejiang Engineering Research Center of Micro/Nano-Photonic/Electronic System Integration, Hangzhou 310030, China)
- Weicheng Cui
(Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
Zhejiang Engineering Research Center of Micro/Nano-Photonic/Electronic System Integration, Hangzhou 310030, China
Zhejiang Engineering Research Center of Integrated-on-Chips Brain-Computer Interfaces, Hangzhou 310030, China)
Abstract
Human-powered electricity generation (HPEG) systems offer promising sustainable energy solutions, yet existing deterministic models fail to capture the inherent variability in human biomechanical performance. This study develops a comprehensive stochastic framework integrating advanced Monte Carlo uncertainty quantification with multi-component fatigue modeling and Pareto optimization. The framework incorporates physiological parameter vectors, kinematic variables, and environmental factors through multivariate distributions, addressing the complex stochastic nature of human power generation. A novel multi-component efficiency function integrates biomechanical, coordination, fatigue, thermal, and adaptation effects, while advanced fatigue dynamics distinguish between peripheral muscular, central neural, and substrate depletion mechanisms. Experimental validation (623 trials, 7 participants) demonstrates RMSE of 3.52 W and CCC of 0.996. Monte Carlo analysis reveals mean power output of 97.6 ± 37.4 W (95% CI: 48.4–174.9 W) with substantial inter-participant variability (CV = 37.6%). Pareto optimization identifies 19 non-dominated solutions across force-cadence space, with maximum power configuration achieving 175.5 W at 332.7 N and 110.4 rpm. This paradigm shift provides essential foundations for next-generation HPEG implementations across emergency response, off-grid communities, and sustainable infrastructure applications. The framework thus delivers dual contributions: advancing stochastic uncertainty quantification methodologies for complex biomechanical systems while enabling resilient decentralized energy solutions critical for sustainable development and climate adaptation strategies.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4821-:d:1746550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.