IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4442-d1729090.html
   My bibliography  Save this article

Powering the Woods Hole X-Spar Buoy with Ocean Wave Energy—A Control Co-Design Feasibility Study

Author

Listed:
  • Daniel T. Gaebele

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Ryan G. Coe

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Giorgio Bacelli

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Thomas Lanagan

    (Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA)

  • Paul Fucile

    (Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA)

  • Umesh A. Korde

    (Johns Department of Environmental Health and Engineering, Hopkins University, Baltimore, MD 21218, USA)

  • John Toole

    (Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA)

Abstract

Despite its success in measuring air–sea exchange, the Woods Hole Oceanographic Institution’s (WHOI) X-Spar Buoy faces operational limitations due to energy constraints, motivating the integration of an energy harvesting apparatus to improve its deployment duration and capabilities. This work explores the feasibility of an augmented, self-powered system in two parts. Part 1 presents the collaborative design between X-Spar developers and wave energy researchers translating user needs into specific functional requirements. Based on requirements like desired power levels, deployability, survivability, and minimal interference with environmental data collection, unsuitable concepts are pre-eliminated from further feasibility study consideration. In part 2, we focus on one of the promising concepts: an internal rigid body wave energy converter. We apply control co-design methods to consider commercial of the shelf hardware components in the dynamic models and investigate the concept’s power conversion capabilities using linear 2-port wave-to-wire models with concurrently optimized control algorithms that are distinct for every considered hardware configuration. During this feasibility study we utilize two different control algorithms, the numerically optimal (but acausal) benchmark and the optimized damping feedback. We assess the sensitivity of average power to variations in drive-train friction, a parameter with high uncertainty, and analyze stroke limitations to ensure operational constraints are met. Our results indicate that a well-designed power take-off (PTO) system could significantly extend the WEC-Spar’s mission by providing additional electrical power without compromising data quality.

Suggested Citation

  • Daniel T. Gaebele & Ryan G. Coe & Giorgio Bacelli & Thomas Lanagan & Paul Fucile & Umesh A. Korde & John Toole, 2025. "Powering the Woods Hole X-Spar Buoy with Ocean Wave Energy—A Control Co-Design Feasibility Study," Energies, MDPI, vol. 18(16), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4442-:d:1729090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindroth, Simon & Leijon, Mats, 2011. "Offshore wave power measurements—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4274-4285.
    2. Harms, Julius & Hollm, Marten & Dostal, Leo & Kern, Thorsten A. & Seifried, Robert, 2022. "Design and optimization of a wave energy converter for drifting sensor platforms in realistic ocean waves," Applied Energy, Elsevier, vol. 321(C).
    3. Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
    2. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    3. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    6. Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
    7. Li, Hai & Shi, Xiaodan & Kong, Weihua & Kong, Lingji & Hu, Yongli & Wu, Xiaoping & Pan, Hongye & Zhang, Zutao & Pan, Yajia & Yan, Jinyue, 2025. "Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review," Renewable Energy, Elsevier, vol. 238(C).
    8. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Wu, Bi-jun & Li, Meng & Wu, Ru-kang & Zhang, Yun-qiu & Peng, Wen, 2017. "Experimental study on primary efficiency of a new pentagonal backward bent duct buoy and assessment of prototypes," Renewable Energy, Elsevier, vol. 113(C), pages 774-783.
    10. Wang, LiGuo & Li, Hui & Lin, Jing & Yan, Xun & Lu, GuanYu & Wu, ShiXuan & Peng, WeiZhi, 2024. "Vibration energy harvesting from an unmanned surface vehicle: Concept design, open sea tests and harvester optimization," Renewable Energy, Elsevier, vol. 222(C).
    11. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    12. Fangming Li & Shuowen Sun & Xingfu Wan & Minzheng Sun & Steven L. Zhang & Minyi Xu, 2025. "A self-powered soft triboelectric-electrohydrodynamic pump," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    14. Runhua He & Guanghua He & Penglin Jing & Zhengxiao Luan & Chaogang Liu, 2025. "Adaptive Damping PTO Control of Wave Energy Converter for Irregular Waves Supported by Wavelet Transformation," Energies, MDPI, vol. 18(13), pages 1-25, June.
    15. Azam, Ali & Ahmed, Ammar & Yi, Minyi & Zhang, Zutao & Zhang, Zeqiang & Aslam, Touqeer & Mugheri, Shoukat Ali & Abdelrahman, Mansour & Ali, Asif & Qi, Lingfei, 2024. "Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    16. Tang, Tianyi & Li, Yunfei & Huang, Manjuan & Mei, Mingqi & Wang, Zizhao & Zha, Fusheng & Sun, Lining & Liu, Huicong, 2025. "Ultra-low-frequency and high-power Mag-Boost mechanism for ocean wave energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    17. Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    18. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
    19. Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
    20. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Guoda, 2023. "Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme," Applied Energy, Elsevier, vol. 349(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4442-:d:1729090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.