IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60418-9.html
   My bibliography  Save this article

Self-powered sensing platform based on triboelectric nanogenerators towards intelligent mining industry

Author

Listed:
  • Lindong Liu

    (University of Science and Technology Beijing
    Chinese Academy of Sciences)

  • Yurui Shang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Andy Berbille

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Morten Willatzen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Aalborg University)

  • Yuan Wang

    (University of Science and Technology Beijing)

  • Xunjia Li

    (Chinese Academy of Sciences)

  • Longyi Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiongxin Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jianwu Chen

    (University of Science and Technology Beijing
    China Academy of Safety Science and Technology)

  • Bin Yang

    (University of Science and Technology Beijing
    China Academy of Safety Science and Technology)

  • Cuifeng Du

    (University of Science and Technology Beijing)

  • Zhong Lin Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Laipan Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Gold’s crucial role in economic and technological developments has driven the industry towards underground mining, with air quality concerns challenging workers’ safety. Currently, commercial solutions to assess air quality and safety in underground mines often suffer from low accuracy, high installation and maintenance costs, without providing data on noxious gases. To address these limitations, we developed a triboelectric self-powered sensing-platform (TESS) employing two distinct triboelectric nanogenerators (TENGs) modules to achieve power generation and wind-speed sensing function, with an ultra-low starting wind speed (0.32 m s−1), capable of operating for up to 3 months in underground mining tunnels. Wind-sensing capabilities are accrued by a horizontal turbine based on non-contact TENGs. Meanwhile, the TESS is powered by a distinct array of TENGs that operates via a new working mode, balancing the advantages of contact-separation and free-standing modes. Assisted by an optimized self-driven power management system, the TESS attains a charging power density of 16.36 mW m−2; this power is delivered every 166 s to a sensor node (temperature, relative humidity, pressure, and concentrations of CO, NO2, NH3), a data processing unit, and a LoRa transmitter. This work represents a leap forward in developing robust, cost-effective, battery-free, and wireless TENG-based environmental sensing platforms.

Suggested Citation

  • Lindong Liu & Yurui Shang & Andy Berbille & Morten Willatzen & Yuan Wang & Xunjia Li & Longyi Li & Xiongxin Luo & Jianwu Chen & Bin Yang & Cuifeng Du & Zhong Lin Wang & Laipan Zhu, 2025. "Self-powered sensing platform based on triboelectric nanogenerators towards intelligent mining industry," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60418-9
    DOI: 10.1038/s41467-025-60418-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60418-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60418-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang Xia & Takafumi Yatabe & Kentaro Yonesato & Soichi Kikkawa & Seiji Yamazoe & Ayako Nakata & Ryo Ishikawa & Naoya Shibata & Yuichi Ikuhara & Kazuya Yamaguchi & Kosuke Suzuki, 2024. "Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    2. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    3. Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
    4. Nitin Satpute & Marek Iwaniec & Joanna Iwaniec & Manisha Mhetre & Swapnil Arawade & Siddharth Jabade & Marian Banaś, 2023. "Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification," Energies, MDPI, vol. 16(3), pages 1-22, January.
    5. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    6. Liu, Ping & Zhong, Tao & Xu, Gaobo & Mao, Wenfei & Yang, Shijing & Jiang, Zezhuan & Xu, Cunyun & Song, Qunliang, 2024. "Controlling the residual charge to alleviate the frequency dependence of ternary direct current triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
    7. Çelebi, Samet & Kocakulak, Tolga & Demir, Usame & Ergen, Gökhan & Yilmaz, Emre, 2023. "Optimizing the effect of a mixture of light naphtha, diesel and gasoline fuels on engine performance and emission values on an HCCI engine," Applied Energy, Elsevier, vol. 330(PB).
    8. Li, Qizhou & He, Lipeng & Lv, Xingqian & Liu, Zheming & Li, Zhenheng & Fan, Wei, 2025. "A piezoelectric energy harvester based on center of gravity shift," Applied Energy, Elsevier, vol. 377(PA).
    9. Zhu, Mingkang & Zhang, Jiacheng & Wang, Zhaohui & Yu, Xin & Zhang, Yuejun & Zhu, Jianyang & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting," Applied Energy, Elsevier, vol. 326(C).
    10. Wang, Xinxian & Gao, Qi & Zhu, Mingkang & Wang, Jianlong & Zhu, Jianyang & Zhao, Hongwei & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting," Applied Energy, Elsevier, vol. 323(C).
    11. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    12. Qi, Youchao & Kuang, Yang & Liu, Yaoyao & Liu, Guoxu & Zeng, Jianhua & Zhao, Junqing & Wang, Lu & Zhu, Meiling & Zhang, Chi, 2022. "Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor," Applied Energy, Elsevier, vol. 327(C).
    13. Mantas Svazas & Valentinas Navickas, 2025. "The Synergy Potential of Energy and Agriculture—The Main Directions of Development," Energies, MDPI, vol. 18(5), pages 1-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60418-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.