IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

I-optimal versus D-optimal split-plot response surface designs

  • JONES, Bradley
  • GOOS, Peter

Response surface experiments often involve only quantitative factors, and the response is fit using a full quadratic model in these factors. The term response surface implies that interest in these studies is more on prediction than parameter estimation since the points on the fitted surface are predicted responses. When computing optimal designs for response surface experiments, it therefore makes sense to focus attention on the predictive capability of the designs. However, the most popular criterion for creating optimal experimental designs is the D-optimality criterion, which aims to minimize the variance of the factor-effect estimates in an omnibus sense. Because I-optimal designs minimize the average variance of prediction over the region of experimentation, their focus is clearly on prediction. Therefore, the I-optimality criterion seems to be a more appropriate one than the D-optimality criterion for generating response surface designs. Here, we introduce I-optimal design of split-plot response surface experiments. We show through several examples that I-optimal split-plot designs provide substantial benefits in terms of prediction compared to D-optimal split-plot designs, while also performing very well in terms of the precision of the factor-effect estimates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.uantwerpen.be/images/uantwerpen/container1244/files/TEW%20-%20Onderzoek/Working%20Papers/RPS/2012/RPS-2012-002.pdf
Our checks indicate that this address may not be valid because: 500 Can't connect to www.uantwerpen.be:443. If this is indeed the case, please notify (Joeri Nys)


Download Restriction: no

Paper provided by University of Antwerp, Faculty of Applied Economics in its series Working Papers with number 2012002.

as
in new window

Length: 29 pages
Date of creation: Jan 2012
Date of revision:
Handle: RePEc:ant:wpaper:2012002
Contact details of provider: Postal: Prinsstraat 13, B-2000 Antwerpen
Web page: https://www.uantwerp.be/en/faculties/applied-economic-sciences/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. ARNOUTS, Heidi & GOOS, Peter, 2008. "Update formulas for split-plot and block designs," Working Papers 2008022, University of Antwerp, Faculty of Applied Economics.
  2. Bradley Jones & Peter Goos, 2007. "A candidate-set-free algorithm for generating "D"-optimal split-plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364.
  3. Peter Goos, 2006. "Optimal versus orthogonal and equivalent-estimation design of blocked and split-plot experiments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(3), pages 361-378.
  4. MACHARIA, Harrison & GOOS, Peter, 2010. "D-optimal and D-efficient equivalent-estimation second-order split-plot designs," Working Papers 2010011, University of Antwerp, Faculty of Applied Economics.
  5. SCHOEN, Eric D. & JONES, Bradley & GOOS, Peter, 2010. "Split-plot experiments with factor-dependent whole-plot sizes," Working Papers 2010001, University of Antwerp, Faculty of Applied Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2012002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.