IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Split-plot experiments with factor-dependent whole-plot sizes

  • SCHOEN, Eric D.
  • JONES, Bradley
  • GOOS, Peter

In industrial split-plot experiments, the number of runs within each whole plot is usually determined independently from the factor settings. As a matter of fact, it is often equal to the number of runs that can be done within a given period of time or to the number of samples that can be processed in one oven run or with one batch. In such cases, the size of every whole plot in the experiment is fixed no matter what factor levels are actually used in the experiment. In this article, we discuss the design of a real-life experiment on the production of coffee cream where the number of runs within a whole plot is not fixed, but depends on the level of one of the whole-plot factors. We provide a detailed discussion of various ways to set up the experiment and discuss how existing algorithms to construct optimal split-plot designs can be modified for that purpose. We conclude the paper with a few general recommendations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Antwerp, Faculty of Applied Economics in its series Working Papers with number 2010001.

in new window

Length: 18 pages
Date of creation: Jan 2010
Date of revision:
Handle: RePEc:ant:wpaper:2010001
Contact details of provider: Postal: Prinsstraat 13, B-2000 Antwerpen
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. JONES, Bradley & GOOS, Peter, . "A candidate-set-free algorithm for generating D-optimal split-plot designs," Working Papers 2006006, University of Antwerp, Faculty of Applied Economics.
  2. D. R. Bingham & E. D. Schoen & R. R. Sitter, 2004. "Designing fractional factorial split-plot experiments with few whole-plot factors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 325-339.
  3. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2010001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.