IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2009007.html
   My bibliography  Save this paper

Design and analysis of industrial strip-plot experiments

Author

Listed:
  • ARNOUTS, Heidi
  • GOOS, Peter

Abstract

The cost of experimentation can often be reduced by forgoing complete randomization. A well-known design with restricted randomization is a split-plot design, which is commonly used in industry when some experimental factors are harder to change than others or when a two-stage production process is studied. Split-plot designs are also often used in robust product design to develop products that are insensitive to environmental or noise factors. Another, lesser known, type of experimental design plan that can be used in such situations is the strip-plot experimental design. Strip-plot designs are economically attractive in situations where the factors are hard to change and the process under investigation consists of two distinct stages, and where it is possible to apply the second stage to groups of semi-finished products from the first stage. They have a correlation structure similar to row-column designs and can be seen as special cases of split-lot designs. In this paper, we show how optimal design of experiments allows for the creation of a broad range of strip-plot designs.

Suggested Citation

  • ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Applied Economics.
  • Handle: RePEc:ant:wpaper:2009007
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/129464/aaaea8c9.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Goos, P. & Donev, A.N., 2006. "Blocking response surface designs," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1075-1088, November.
    2. Eric Schoen, 1999. "Designing fractional two-level experiments with nested error structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 495-508.
    3. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    4. Bradley Jones & Peter Goos, 2007. "A candidate-set-free algorithm for generating "D"-optimal split-plot designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 347-364.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2009007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys). General contact details of provider: http://edirc.repec.org/data/ftufsbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.