IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i520p1417-1429.html
   My bibliography  Save this article

The Design and Analysis for the Icing Wind Tunnel Experiment of a New Deicing Coating

Author

Listed:
  • Xiaodong Li
  • Xu He
  • Yuanzhen He
  • Hui Zhang
  • Zhong Zhang
  • Dennis K. J. Lin

Abstract

A new kind of deicing coating is developed to provide aircraft with efficient and durable protection from icing-induced dangers. The icing wind tunnel experiment is indispensable in confirming the usefulness of a deicing coating. Due to the high cost of each batch relative to the available budget, an efficient design of the icing wind tunnel experiment is crucial. The challenges in designing this experiment are multi-fold. It involves between-block factors and within-block factors, incomplete blocking with random effects, related factors, hard-to-change factors, and nuisance factors. Traditional designs and theories cannot be directly applied. To overcome these challenges, we propose using a step-by-step design strategy that includes applying a cross array structure for between-block factors and within-block factors, a group of balanced conditions for optimizing incomplete blocking, a run order method to achieve the minimum number of level changes for hard-to-change factors, and a zero aliased matrix for the nuisance factors. New (theoretical) results for D-optimal design of incomplete blocking experiments with random block effects and minimum number of level changes are obtained. Results of the experiments show that this novel deicing coating is promising in offering both high efficiency of ice reduction and a long service lifetime. The methodology proposed here is generalizable to other applications that involve nonstandard design problems. Supplementary materials for this article are available online.

Suggested Citation

  • Xiaodong Li & Xu He & Yuanzhen He & Hui Zhang & Zhong Zhang & Dennis K. J. Lin, 2017. "The Design and Analysis for the Icing Wind Tunnel Experiment of a New Deicing Coating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1417-1429, October.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1417-1429
    DOI: 10.1080/01621459.2017.1281812
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1281812
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1281812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MACHARIA, Harrison & GOOS, Peter, 2010. "D-optimal and D-efficient equivalent-estimation second-order split-plot designs," Working Papers 2010011, University of Antwerp, Faculty of Business and Economics.
    2. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    3. Peter Goos, 2006. "Optimal versus orthogonal and equivalent‐estimation design of blocked and split‐plot experiments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(3), pages 361-378, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalliopi Mylona & Harrison Macharia & Peter Goos, 2013. "Three-level equivalent-estimation split-plot designs based on subset and supplementary difference set designs," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1153-1165.
    2. ARNOUTS, Heidi & GOOS, Peter, 2013. "Staggered-level designs for response surface modeling," Working Papers 2013027, University of Antwerp, Faculty of Business and Economics.
    3. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    4. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth, 2017. "An algorithmic framework for generating optimal two-stratum experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 224-249.
    5. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    6. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.
    7. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    8. Murat Kulahci & John Tyssedal, 2017. "Split-plot designs for multistage experimentation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 493-510, February.
    9. ARNOUTS, Heidi & GOOS, Peter, 2009. "Design and analysis of industrial strip-plot experiments," Working Papers 2009007, University of Antwerp, Faculty of Business and Economics.
    10. Kessels, Roselinde & Goos, Peter & Vandebroek, Martina, 2008. "Optimal designs for conjoint experiments," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2369-2387, January.
    11. Loeza-Serrano, S. & Donev, A.N., 2014. "Construction of experimental designs for estimating variance components," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1168-1177.
    12. Lin, Chang-Yun & Yang, Po, 2019. "Data-driven multistratum designs with the generalized Bayesian D-D criterion for highly uncertain models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 222-238.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1417-1429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.