IDEAS home Printed from
   My bibliography  Save this paper

An iterated local search algorithm for the construction of large scale D-optimal experimental designs


  • CUERVO, Daniel Palhazi
  • GOOS, Peter
  • SÖRENSEN, Kenneth


We focus on the D-optimal design of screening experiments involving main-effects regression models, especially with large numbers of factors and observations. We propose a new selection strategy for the coordinate-exchange algorithm based on an orthogonality measure of the design. Computational experiments show that this strategy finds better designs within an execution time that is 30% shorter than other strategies. We also provide strong evidence that the use of the prediction variance as a selection strategy does not provide any added value in comparison to simpler selection strategies. Additionally, we propose a new iterated local search algorithm for the construction of D-optimal experimental designs. This new algorithm clearly outperforms the original coordinate-exchange algorithm.

Suggested Citation

  • CUERVO, Daniel Palhazi & GOOS, Peter & SÖRENSEN, Kenneth, 2013. "An iterated local search algorithm for the construction of large scale D-optimal experimental designs," Working Papers 2013006, University of Antwerp, Faculty of Applied Economics.
  • Handle: RePEc:ant:wpaper:2013006

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Grace Montepiedra, 1998. "Application of genetic algorithms to the construction of exact D-optimal designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(6), pages 817-826.
    2. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    3. Nguyen, Nam-Ky & Miller, Alan J., 1992. "A review of some exchange algorithms for constructing discrete D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 489-498, November.
    4. Lejeune, Miguel A., 2003. "Heuristic optimization of experimental designs," European Journal of Operational Research, Elsevier, vol. 147(3), pages 484-498, June.
    5. Sung Jung, Joo & Jin Yum, Bong, 1996. "Construction of exact D-optimal designs by tabu search," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 181-191, February.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Optimal design of experiments; D-optimality criterion; Metaheuristic; Iterated local search; Coordinate-exchange algorithm;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2013006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.