EDformer family: End-to-end multi-task load forecasting frameworks for day-ahead economic dispatch
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.125319
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Jonkers, Jef & Avendano, Diego Nieves & Van Wallendael, Glenn & Van Hoecke, Sofie, 2024. "A novel day-ahead regional and probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests," Applied Energy, Elsevier, vol. 361(C).
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Agbessi Akuété Pierre & Salami Adekunlé Akim & Agbosse Kodjovi Semenyo & Birregah Babiga, 2023. "Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches," Energies, MDPI, vol. 16(12), pages 1-12, June.
- Tian, Zhirui & Gai, Mei, 2023. "A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism," Energy, Elsevier, vol. 281(C).
- You, Minglei & Wang, Qian & Sun, Hongjian & Castro, Iván & Jiang, Jing, 2022. "Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties," Applied Energy, Elsevier, vol. 305(C).
- Tian, Zhirui & Wang, Jiyang, 2023. "A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer," Renewable Energy, Elsevier, vol. 215(C).
- Mercier, Thomas M. & Sabet, Amin & Rahman, Tasmiat, 2024. "Vision transformer models to measure solar irradiance using sky images in temperate climates," Applied Energy, Elsevier, vol. 362(C).
- Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
- Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
- Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
- Finkenrath, Matthias & Faber, Till & Behrens, Fabian & Leiprecht, Stefan, 2022. "Holistic modelling and optimisation of thermal load forecasting, heat generation and plant dispatch for a district heating network," Energy, Elsevier, vol. 250(C).
- Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
- Wang, Xinyue & Zhong, Haiwang & Zhang, Guanglun & Ruan, Guangchun & He, Yiliu & Yu, Zekuan, 2024. "Adaptive look-ahead economic dispatch based on deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
- Bao, Peng & Xu, Qingshan & Yang, Yongbiao & Nan, Yu & Wang, Yucui, 2024. "Efficient virtual power plant management strategy and Leontief-game pricing mechanism towards real-time economic dispatch support: A case study of large-scale 5G base stations," Applied Energy, Elsevier, vol. 358(C).
- Han, Yongming & Li, Zhiyi & Wei, Tingting & Zuo, Xiaoyu & Liu, Min & Ma, Bo & Geng, Zhiqiang, 2024. "Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion," Applied Energy, Elsevier, vol. 365(C).
- Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
- Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Wang, Xin & Liu, Xiang & Bai, Yun, 2024. "Prediction of the temperature of diesel engine oil in railroad locomotives using compressed information-based data fusion method with attention-enhanced CNN-LSTM," Applied Energy, Elsevier, vol. 367(C).
- Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
- Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ren, Xiaoxiao & Tian, Xin & Wang, Kai & Yang, Sifan & Chen, Weixiong & Wang, Jinshi, 2025. "Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion," Energy, Elsevier, vol. 319(C).
- Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
- Sun, Yang & Tian, Zhirui, 2025. "Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble," Applied Energy, Elsevier, vol. 377(PD).
- Tian, Zhirui & Liu, Weican & Sun, Wenpu & Wu, Chenye, 2025. "From LMP to eLMP: An accurate transfer strategy for electricity price prediction based on learning ensemble," Energy, Elsevier, vol. 325(C).
- Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
- Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
- Tian, Zhirui & Sun, Wenpu & Wu, Chenye, 2025. "MLP-Carbon: A new paradigm integrating multi-frequency and multi-scale techniques for accurate carbon price forecasting," Applied Energy, Elsevier, vol. 383(C).
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
- Li, Feng & Liu, Shiheng & Wang, Tianhu & Liu, Ranran, 2024. "Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-Attention network forecasts," Energy, Elsevier, vol. 309(C).
- Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
- Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
- Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
- Liao, Chengchen & Tan, Mao & Li, Kang & Chen, Jie & Wang, Rui & Su, Yongxin, 2024. "Sequence signal prediction and reconstruction for multi-energy load forecasting in integrated energy systems: A bi-level multi-task learning method," Energy, Elsevier, vol. 313(C).
- Kostas Hatalis & Chengbo Zhao & Parv Venkitasubramaniam & Larry Snyder & Shalinee Kishore & Rick S. Blum, 2020. "Modeling and Detection of Future Cyber-Enabled DSM Data Attacks," Energies, MDPI, vol. 13(17), pages 1-27, August.
- Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Long-term price guidance mechanism for integrated energy systems based on gated recurrent unit - vision transformer prediction and fractional-order stochastic dynamic calculus control," Energy, Elsevier, vol. 312(C).
- Renxi Gong & Xianglong Li, 2023. "A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism," Energies, MDPI, vol. 16(6), pages 1-24, March.
- Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
- Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
- Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
- Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000492. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.