A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2023.103956
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dario Caldara & Matteo Iacoviello, 2022.
"Measuring Geopolitical Risk,"
American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
- Dario Caldara & Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," International Finance Discussion Papers 1222r1, Board of Governors of the Federal Reserve System (U.S.), revised 23 Mar 2022.
- Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
- Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
- Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
- Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
- Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
- Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
- Salisu, Afees A. & Isah, Kazeem O., 2017. "Revisiting the oil price and stock market nexus: A nonlinear Panel ARDL approach," Economic Modelling, Elsevier, vol. 66(C), pages 258-271.
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
- Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
- Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "U.S. shale oil production and WTI prices behaviour," Energy, Elsevier, vol. 141(C), pages 12-19.
- Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Wang, Gang & Sharma, Paritosh & Jain, Vipin & Shukla, Avanish & Shahzad Shabbir, Malik & Tabash, Mosab I. & Chawla, Chanchal, 2022. "The relationship among oil prices volatility, inflation rate, and sustainable economic growth: Evidence from top oil importer and exporter countries," Resources Policy, Elsevier, vol. 77(C).
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Kanjilal, Kakali & Ghosh, Sajal, 2017. "Dynamics of crude oil and gold price post 2008 global financial crisis – New evidence from threshold vector error-correction model," Resources Policy, Elsevier, vol. 52(C), pages 358-365.
- Arora, Vipin & Tanner, Matthew, 2013.
"Do oil prices respond to real interest rates?,"
Energy Economics, Elsevier, vol. 36(C), pages 546-555.
- Arora, Vipin & Tanner, Matthew, 2011. "How important are real interest rates for oil prices?," MPRA Paper 35883, University Library of Munich, Germany.
- Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
- Miljkovic, Dragan & Goetz, Cole, 2020. "The effects of futures markets on oil spot price volatility in regional US markets," Applied Energy, Elsevier, vol. 273(C).
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
- Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
- Zhang, Yue-Jun, 2013. "Speculative trading and WTI crude oil futures price movement: An empirical analysis," Applied Energy, Elsevier, vol. 107(C), pages 394-402.
- He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
- Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
- Gao, Ciwei & Bompard, Ettore & Napoli, Roberto & Cheng, Haozhong, 2007. "Price forecast in the competitive electricity market by support vector machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 98-113.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
- Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
- Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
- Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
- Klein, Tony, 2018. "Trends and Contagion in WTI and Brent Crude Oil Spot and Futures Markets - The Role of OPEC in the last Decade," QBS Working Paper Series 2018/05, Queen's University Belfast, Queen's Business School.
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
- Du, Limin & He, Yanan, 2015. "Extreme risk spillovers between crude oil and stock markets," Energy Economics, Elsevier, vol. 51(C), pages 455-465.
- Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Ruan, Qingsong & Wang, Yao & Lu, Xinsheng & Qin, Jing, 2016. "Cross-correlations between Baltic Dry Index and crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 278-289.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Haolin & Xu, Siqi & Gao, Weijun & Wang, Yafei & Li, You & Wei, Xindong, 2024. "Mitigating long-term financial risk for large customers via a hybrid procurement strategy considering power purchase agreements," Energy, Elsevier, vol. 295(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
- Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
- Baruník, Jozef & Malinská, Barbora, 2016.
"Forecasting the term structure of crude oil futures prices with neural networks,"
Applied Energy, Elsevier, vol. 164(C), pages 366-379.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the term structure of crude oil futures prices with neural networks," Papers 1504.04819, arXiv.org.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the Term Structure of Crude Oil Futures Prices with Neural Networks," Working Papers IES 2015/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2015.
- Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Qin, Quande & Xie, Kangqiang & He, Huangda & Li, Li & Chu, Xianghua & Wei, Yi-Ming & Wu, Teresa, 2019. "An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction," Energy Economics, Elsevier, vol. 83(C), pages 402-414.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
More about this item
Keywords
WTI futures prices; Multi-step forecasting; Self-attention mechanism; Spatial–temporal graph neural network; Dilated causal convolution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.