Forecasting the Term Structure of Crude Oil Futures Prices with Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the term structure of crude oil futures prices with neural networks," Papers 1504.04819, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhai, Dongsheng & Zhang, Tianrui & Liang, Guoqiang & Liu, Baoliu, 2025. "Research on crude oil futures price prediction methods: A perspective based on quantum deep learning," Energy, Elsevier, vol. 320(C).
- Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Guo, Lili & Huang, Xinya & Li, Yanjiao & Li, Houjian, 2023. "Forecasting crude oil futures price using machine learning methods: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
- Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
- Liang, Qian & Lin, Qingyuan & Guo, Mengzhuo & Lu, Quanying & Zhang, Dayong, 2025. "Forecasting crude oil prices: A Gated Recurrent Unit-based nonlinear Granger Causality model," International Review of Financial Analysis, Elsevier, vol. 102(C).
- Bredin, Don & O'Sullivan, Conall & Spencer, Simon, 2021. "Forecasting WTI crude oil futures returns: Does the term structure help?," Energy Economics, Elsevier, vol. 100(C).
- Chai, Jian & Lu, Quanying & Hu, Yi & Wang, Shouyang & Lai, Kin Keung & Liu, Hongtao, 2018. "Analysis and Bayes statistical probability inference of crude oil price change point," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 271-283.
- Zhang, Wei & Wu, Jiayi & Wang, Shun & Zhang, Yong, 2025. "Examining dynamics: Unraveling the impact of oil price fluctuations on forecasting agricultural futures prices," International Review of Financial Analysis, Elsevier, vol. 97(C).
- Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
- Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020.
"A functional time series analysis of forward curves derived from commodity futures,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
- Lajos Horváth & Zhenya Liu & Gregory Rice & Shixuan Wang, 2020. "A functional time series analysis of forward curves derived from commodity futures," Post-Print hal-03513421, HAL.
- Xiaojun Chen & Yun Shi & Xiaozhou Wang, 2020. "Equilibrium Oil Market Share under the COVID-19 Pandemic," Papers 2007.15265, arXiv.org.
- Mei-Teing Chong & Chin-Hong Puah & Shazali Abu Mansor, 2018. "Oil Price Dynamics Forecasting: An Indicator-Pivoted Paradigm," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 307-311.
- Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
- Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
- Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
- Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
- Mario Figueiredo & Yuri F. Saporito, 2023. "Forecasting the term structure of commodities future prices using machine learning," Digital Finance, Springer, vol. 5(1), pages 57-90, March.
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
- Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
- Mustanen, Dmitri & Maaitah, Ahmad & Mishra, Tapas & Parhi, Mamata, 2022. "The power of investors’ optimism and pessimism in oil market forecasting," Energy Economics, Elsevier, vol. 114(C).
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
More about this item
Keywords
; ; ; ;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2015_25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/fau/wpaper/wp2015_25.html