IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v67y2024ipas1544612324008195.html
   My bibliography  Save this article

Oil market regulatory: An ensembled model for prediction

Author

Listed:
  • Chen, Haixin
  • Liu, Yancheng
  • Li, Xiangjie
  • Gu, Xiang
  • Fan, Kun

Abstract

This study develops an ensemble framework combining phase space reconstruction and support vector machines to predict oil prices, crucial for economic regulation in energy markets. We analyzed five representative crude oils from spot and futures markets. Our method provides reliable 18-day predictions, demonstrating robustness against non-stationary, noisy data. Compared to traditional models, it shows superior performance, enhancing market stability and surveillance. This research offers a valuable predictive tool for policymakers and market participants, supporting informed decision-making in economic governance.

Suggested Citation

  • Chen, Haixin & Liu, Yancheng & Li, Xiangjie & Gu, Xiang & Fan, Kun, 2024. "Oil market regulatory: An ensembled model for prediction," Finance Research Letters, Elsevier, vol. 67(PA).
  • Handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324008195
    DOI: 10.1016/j.frl.2024.105789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324008195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    2. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    3. Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
    4. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    5. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    6. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    7. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    8. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    9. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    10. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    11. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    12. Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
    13. Yu, Lean & Zhao, Yang & Tang, Ling, 2014. "A compressed sensing based AI learning paradigm for crude oil price forecasting," Energy Economics, Elsevier, vol. 46(C), pages 236-245.
    14. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    15. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    16. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    17. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    18. Tao Wu & Xiangyun Gao & Feng An & Xiaotian Sun & Haizhong An & Zhen Su & Shraddha Gupta & Jianxi Gao & Jürgen Kurths, 2024. "Predicting multiple observations in complex systems through low-dimensional embeddings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.
    20. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    21. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    22. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    23. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    2. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    3. Qin, Quande & Xie, Kangqiang & He, Huangda & Li, Li & Chu, Xianghua & Wei, Yi-Ming & Wu, Teresa, 2019. "An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction," Energy Economics, Elsevier, vol. 83(C), pages 402-414.
    4. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    5. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    6. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    7. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    8. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    9. Arroyo Marioli,Francisco & Khadan,Jeetendra & Ohnsorge,Franziska Lieselotte & Yamazaki,Takefumi, 2023. "Forecasting Industrial Commodity Prices : Literature Review and a Model Suite," Policy Research Working Paper Series 10611, The World Bank.
    10. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    11. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    14. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    15. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    16. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
    17. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    18. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    19. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    20. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324008195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.