IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp49-58.html
   My bibliography  Save this article

Oil price forecasting using a hybrid model

Author

Listed:
  • Safari, Ali
  • Davallou, Maryam

Abstract

Forecasting oil prices is an important and challenging matter, because of its impact on many economic and non-economic factors. Because factors such as economic growth, political events, and psychological expectations affect oil prices, forecasting oil prices has great uncertainty. There is no consensus among researchers about the techniques and models used to predict oil prices; hence, methods of forecasting with higher accuracy and lower error should be developed. It is important to combine different models and investigate different approaches, especially time-varying forms. In this paper, the exponential smoothing model (ESM), autoregressive integrated moving average model (ARIMA), and nonlinear autoregressive (NAR) neural network are combined in a state-space model framework to increase the accuracy of forecasting that accounts for problems in accurate diagnosis of linear and nonlinear patterns in economic and financial time series such as for crude oil prices. In the proposed hybrid model (PHM), time-varying weights for each model are determined by Kalman filter. The PHM is used on monthly OPEC crude oil prices and WTI crude oil spot prices. The numerical results show a decrease in forecasting error using the PHM compared to its constructive models, the equal weights hybrid model (EWH), the genetic algorithm weights hybrid model (GWH), and the Zhang's hybrid model (ZHM).

Suggested Citation

  • Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:49-58
    DOI: 10.1016/j.energy.2018.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300070
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
    2. Siddhivinayak Kulkarni & Imad Haidar, 2009. "Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices," Papers 0906.4838, arXiv.org.
    3. Rodney W. Strachan & Herman K. van Dijk, 2008. "Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk," Tinbergen Institute Discussion Papers 08-096/4, Tinbergen Institute.
    4. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    5. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    6. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    7. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    8. repec:eee:eneeco:v:66:y:2017:i:c:p:9-16 is not listed on IDEAS
    9. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 81-96.
    10. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. repec:wsi:nmncxx:v:07:y:2011:i:02:n:s1793005711001949 is not listed on IDEAS
    13. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    14. Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
    15. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    16. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    17. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    18. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
    19. Tang, Linghui & Hammoudeh, Shawkat, 2002. "An empirical exploration of the world oil price under the target zone model," Energy Economics, Elsevier, vol. 24(6), pages 577-596, November.
    20. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    21. Amano, Akihiro, 1987. "A small forecasting model of the world oil market," Journal of Policy Modeling, Elsevier, vol. 9(4), pages 615-635.
    22. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    23. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    24. repec:wsi:ijitdm:v:14:y:2015:i:01:n:s0219622015400015 is not listed on IDEAS
    25. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    26. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    27. Gori, F. & Ludovisi, D. & Cerritelli, P.F., 2007. "Forecast of oil price and consumption in the short term under three scenarios: Parabolic, linear and chaotic behaviour," Energy, Elsevier, vol. 32(7), pages 1291-1296.
    28. Vitor G. Azevedo & Lucila M.S. Campos, 2016. "Combination of forecasts for the price of crude oil on the spot market," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5219-5235, September.
    29. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:49-58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.